泰州市氣溫多模式集成預報系統(tǒng)的建立與評估
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

泰州市氣象局自立項目(201301)、江蘇高校優(yōu)勢學科建設工程資助項目(PAPD)資助


Establishment and Evaluation of a Multimodel Ensemble Forecast System of Temperature for Taizhou
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于歐洲中期天氣預報中心、日本氣象廳、美國國家環(huán)境預報中心3個中心的氣溫模式預報資料,采用多模式簡單集合平均(EMN)、滑動訓練期消除偏差集合平均(Running Training Period Biasremoved Ensemble Mean,RBREM)、滑動訓練期超級集合預報(Running Training Period Superensemble Forecast,RSUP) 3種多模式集成方法,通過均方根誤差(Root Mean Square Error,RMSE)和距平相關系數(shù)(Anomaly Correlation Coefficient,ACC)兩種檢驗評估方法,比較了氣溫的單模式預報和多模式集成預報結果,建立了針對江蘇省泰州市的地面氣溫多模式集成預報系統(tǒng)。結果表明:對于該市08:00和20:00起報的氣溫預報,RBREM均是相對最優(yōu)的多模式集成方法,且基于該方法的多模式集成預報結果明顯優(yōu)于單模式預報結果,其RMSE相對于最優(yōu)單模式減小了0.5 ℃左右,ACC增大了約0.16,改進效果顯著。同時,將RBREM方法投入到泰州市的日常氣溫業(yè)務預報中,有效提高了業(yè)務預報準確率。

    Abstract:

    Based on the model prediction outputs from the European Centre for MediumRange Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA) and National Centers for Environmental Prediction (NCEP), the multimodel ensemble forecasts of surface temperature are carried out by methods of the Multimodel Ensemble Mean (EMN), the Running Training Period Biasremoved Ensemble Mean (RBREM) and the Running Training Period Superensemble Forecast (RSUP), for Taizhou, Jiangsu Province. Their forecasts are compared with single model forecasts by means of Root Mean Square Error (RMSE) and Anomaly Correlation Coefficient (ACC). Thus, the multimodel ensemble forecast system is established. For the surface temperature forecast at 08:00 and 20:00, it is found from the comparative analysis of forecast results that the forecast skill of RBREM is apparently superior to those of individual models, EMN, and RSUP. Its average RMSE is reduced by about 0.5 ℃ with respect to the optimal single mode, and ACC increased by about 0.16. Additionally, the RBREM is applied into the daily operational forecast of Taizhou for the temperature. The forecast accuracy rate is improved efficiently due to the RBREM multimodel ensemble forecast system.

    參考文獻
    相似文獻
    引證文獻
引用本文

卞正奎,朱壽鵬,胡航菲,王琴,曹漸華.泰州市氣溫多模式集成預報系統(tǒng)的建立與評估[J].氣象科技,2016,44(4):605~611

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2015-07-31
  • 定稿日期:2015-11-04
  • 錄用日期:
  • 在線發(fā)布日期: 2016-08-29
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發(fā)展有限公司
离岛区| 稻城县| 石屏县| 郎溪县| 碌曲县| 德安县| 黄平县| 肇州县| 桓台县| 麻阳| 蓝田县| 阳江市| 望江县| 临沂市| 永州市| 仁布县| 泾阳县| 柘城县| 萍乡市| 南京市| 呼伦贝尔市| 门头沟区| 固原市| 湾仔区| 宣城市| 思南县| 多伦县| 龙川县| 谢通门县| 柘城县| 万源市| 景东| 罗山县| 凤山县| 平罗县| 淮南市| 永丰县| 阿合奇县| 习水县| 竹山县| 石屏县|