地基可見(jiàn)光全天空云圖云量圖像處理識(shí)別方法
DOI:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

成都信息工程大學(xué)科研基金(CRF201602)、國(guó)家自然科學(xué)基金(41305030)、公益性(氣象)行業(yè)專(zhuān)項(xiàng)(GYHY201106047)資助


Cloudiness Recognition Algorithm of GroundBased Visible AllSky Images Based on Image Processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為增強(qiáng)地基可見(jiàn)光全天空云圖中云與天空的特征和區(qū)別,提高云檢測(cè)率,基于圖像復(fù)原和圖像增強(qiáng)技術(shù)提出一種改善云圖質(zhì)量的方法。該方法采用暗通道去霧算法進(jìn)行圖像復(fù)原;采用亮度直方圖均衡增強(qiáng)圖像紋理細(xì)節(jié);綜合兩種方法,先圖像復(fù)原,再圖像增強(qiáng)。按低能見(jiàn)度薄云、低能見(jiàn)度厚云、高能見(jiàn)度薄云、高能見(jiàn)度厚云4種情況分別進(jìn)行討論,結(jié)果表明:除高能見(jiàn)度薄云采用單一的圖像復(fù)原使云檢測(cè)效果降低外,圖像復(fù)原和圖像增強(qiáng)都能使云檢測(cè)和云量識(shí)別準(zhǔn)確率提高;綜合二者,云檢測(cè)和云量識(shí)別準(zhǔn)確率進(jìn)一步提高;該方法對(duì)薄云和低能見(jiàn)度云圖的改善最為顯著。

    Abstract:

    In order to further distinguish the clouds and the background and improve cloud recognition, this paper proposes an algorithm to improve the quality of cloud images based on image restoration and enhancement techniques. First, a dark channel priordehazing algorithm is employed for image restoration. Then, the features are enhanced using the brightness histogram equalization algorithm. Finally, the two algorithms are combined by using image enhancement after image restoration. At the same time, the four conditions of thin cloud in low visibility, thick cloud in low visibility, thin cloud in high visibility, and thick cloud in high visibility are discussed, respectively. According to the simulation results, except that a single image restoration on thin clouds in high visibility has reduced cloud recognition, the proposed algorithm has significantly improved the image quality and cloud recognition. In addition, the image quality and cloud recognition can be further enhanced using the image restoration and enhancement techniques together, and there are more improvements on thin clouds and clouds in low visibility.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳青青,李彪,湯志亞,楊玲,王耀萱.地基可見(jiàn)光全天空云圖云量圖像處理識(shí)別方法[J].氣象科技,2017,45(6):1006~1010

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-11-29
  • 定稿日期:2017-08-10
  • 錄用日期:
  • 在線發(fā)布日期: 2017-12-28
  • 出版日期:
您是第位訪問(wèn)者
技術(shù)支持:北京勤云科技發(fā)展有限公司
什邡市| 法库县| 老河口市| 许昌市| 盘山县| 沁阳市| 天镇县| 乌拉特前旗| 佛冈县| 安徽省| 青田县| 尚义县| 临西县| 克东县| 右玉县| 张家港市| 彰化市| 晋宁县| 额尔古纳市| 玛纳斯县| 金寨县| 习水县| 淮阳县| 内丘县| 怀化市| 霍林郭勒市| 阿鲁科尔沁旗| 温州市| 宁明县| 富锦市| 砚山县| 常山县| 略阳县| 唐河县| 凯里市| 奎屯市| 娄烦县| 高邑县| 盱眙县| 东至县| 平和县|