基于“深度學(xué)習(xí)”識別模型的玉米農(nóng)田監(jiān)測應(yīng)用系統(tǒng)設(shè)計與實現(xiàn)
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金(61671248, 41605121)、江蘇省重點研發(fā)計劃(BE2018719)和江蘇省“信息與通信工程”優(yōu)勢學(xué)科計劃資助、江蘇省研究生科研創(chuàng)新計劃(KYCX18_1038)資助


Study of Corn Field Monitoring and Application System Based on DeepLearning Recognition Mode
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了精準(zhǔn)判斷玉米所處生長階段,遠程實時監(jiān)測玉米長勢,分析生長階段與田間環(huán)境要素間的關(guān)系,本文提出深度局部關(guān)聯(lián)神經(jīng)網(wǎng)絡(luò),克服了玉米生長階段識別中存在的多模態(tài)和模糊性問題,在Oxford VGGNet(Visual Geometry Group Net)模型中添加一個新的監(jiān)督層,即局部關(guān)聯(lián)損失層,提高深層特征的判別能力。基于所提的玉米生長階段圖片識別新算法,拓展環(huán)境要素監(jiān)測功能,設(shè)計一套基于深度學(xué)習(xí)的玉米農(nóng)田監(jiān)測系統(tǒng)。系統(tǒng)由玉米農(nóng)田監(jiān)測裝置和云端服務(wù)器組成,監(jiān)測裝置采集玉米圖像、氣象要素和田間位置數(shù)據(jù),通過4G無線發(fā)送給云端服務(wù)器,云端服務(wù)器利用深度局部關(guān)聯(lián)神經(jīng)網(wǎng)絡(luò)識別生長階段,顯示結(jié)果并存入數(shù)據(jù)庫中。仿真試驗表明,深度局部關(guān)聯(lián)神經(jīng)網(wǎng)絡(luò)平均識別準(zhǔn)確率達到92.53%,較VGGNet的87.21%和LSTM的88.50%,準(zhǔn)確率分別提高了532%和4.03%。實地測試結(jié)果表明,野外環(huán)境下系統(tǒng)準(zhǔn)確率可達到91.43%,能夠穩(wěn)定地對農(nóng)田玉米生長情況進行監(jiān)測,具有重要的應(yīng)用價值。

    Abstract:

    In order to accurately determine the growth stage of corn, remotely monitor the growth of corn and analyze the relationship between growth stage and field environment elements, this paper proposes a deep local correlation neural network to overcome the multimodal and fuzzy problems in the identification of corn growth stages. In the Oxford VGGNet (Visual Geometry Group Net) model, a new supervised layer, namely the local correlation loss layer, is added to improve the discriminating capability of deep features. Based on the proposed new image recognition algorithm for corn growth stages, the environmental element monitoring function is expanded, and a corn farmland monitoring system based on deep learning is designed. The system consists of a corn farmland monitoring device and a cloud server. The monitoring device collects corn images, meteorological elements and field location data, and sends them to the cloud server through a 4G wireless internet. The cloud server uses the deep local correlation neural network to identify the growth stages, and displays the results and stores them in the database. The simulation experiments show that the average recognition accuracy of the deep local correlation neural network reaches 92.53%, compared with 87.21% of VGGNet and 88.50% of LSTM, and the accuracy rate is increased by 5.32% and 4.03%, respectively. The field test results show that the accuracy rate of the system can reach 91.43% in the field environment, and it can stably monitor the growth of farmland corn, which has important application value.

    參考文獻
    相似文獻
    引證文獻
引用本文

閻妍,行鴻彥,劉剛,吳紅軍,吳慧,戴學(xué)飛,余培.基于“深度學(xué)習(xí)”識別模型的玉米農(nóng)田監(jiān)測應(yīng)用系統(tǒng)設(shè)計與實現(xiàn)[J].氣象科技,2019,47(4):571~580

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-09-03
  • 定稿日期:2018-12-04
  • 錄用日期:
  • 在線發(fā)布日期: 2019-08-27
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
永济市| 崇文区| 兴宁市| 栾城县| 鹤峰县| 天长市| 正镶白旗| 海林市| 庆云县| 康乐县| 嘉峪关市| 中山市| 金塔县| 高碑店市| 磴口县| 桐乡市| 明水县| 南通市| 虞城县| 潜江市| 济阳县| 修水县| 阳春市| 延长县| 贵港市| 昌江| 米泉市| 美姑县| 烟台市| 同心县| 乃东县| 金乡县| 凌海市| 兴仁县| 依兰县| 临高县| 晋州市| 原平市| 芮城县| 桃园县| 昌吉市|