基于關(guān)鍵對(duì)流參數(shù)分級(jí)的強(qiáng)對(duì)流潛勢(shì)預(yù)報(bào)
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃(2018YFC1507601)、上海市科委科研計(jì)劃項(xiàng)目(16DZ1206100)和上海市氣象局強(qiáng)對(duì)流創(chuàng)新團(tuán)隊(duì)共同資助


Severe Convective Potential Forecast Based on Key Convective Parameter Classification
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    通過對(duì)上海地區(qū)1998—2009年4—9月各類強(qiáng)對(duì)流天氣的統(tǒng)計(jì)分析,選取42個(gè)對(duì)流參數(shù)及其時(shí)間變量,采用逐步回歸方法建立了針對(duì)各類強(qiáng)對(duì)流天氣的0~12 h潛勢(shì)預(yù)報(bào)方程。在此基礎(chǔ)上,提出了基于關(guān)鍵對(duì)流參數(shù)進(jìn)行分級(jí)的強(qiáng)對(duì)流潛勢(shì)預(yù)報(bào)方法,選取K〖WTBZ〗指數(shù)、SI〖WTBZ〗指數(shù)、PWV〖WTBZ〗(大氣可降水含量)指數(shù)和θsedif85〖WTBZ〗(500 hPa和850 hPa假相當(dāng)位溫差)等反映大氣熱力和水汽條件的關(guān)鍵對(duì)流參數(shù),根據(jù)對(duì)流分布情況將各對(duì)流參數(shù)分別分為3個(gè)等級(jí),并分級(jí)建立了針對(duì)不同強(qiáng)對(duì)流天氣的潛勢(shì)預(yù)報(bào)方程。與未分級(jí)方程對(duì)比表明:基于關(guān)鍵對(duì)流參數(shù)分級(jí)的預(yù)報(bào)方程對(duì)雷雨大風(fēng)、強(qiáng)雷電和所有對(duì)流等預(yù)報(bào)效果上有明顯提升,采用如下組合評(píng)分更佳:雷雨大風(fēng)的預(yù)報(bào)采用SI〖WTBZ〗分類方程,強(qiáng)雷電和所有對(duì)流采用PWV〖WTBZ〗分類方程。將基于關(guān)鍵對(duì)流參數(shù)分級(jí)的強(qiáng)對(duì)流潛勢(shì)預(yù)報(bào)方法在數(shù)值預(yù)報(bào)模式中進(jìn)行了業(yè)務(wù)應(yīng)用,取得了較好效果。

    Abstract:

    Through the statistical analysis of different types of severe convective weather from April to September from 1998 to 2009 in Shanghai, a stepwise regression method is used to develop 0 to 12 hour potential forecast equations for all types of severe convective weather by using 42 convection parameters and their time variation. A new approach to convective potential forecasting based on the classification of four key convective parameters is designed. The key convective parameters are K index, SI, PWV (Precipitable Water Vapor) and θsedif85 (difference between 500 and 850 hPa in pseudo equivalent temperature), which depict the atmospheric thermal and water vapor conditions, respectively. According to the distributions of different types of convection, these four convective parameters are classified into 3 levels, and convective potential forecast equations are developed for each level, respectively. In comparison with the original equations, the forecast equations based on classified convective parameters are with dramatic increasing validity in the forecasting of thunderstorms, high winds, severe thunders and all types of convective weather. In addition, better performance would be granted with the following combinations: the classified SIbased equations for forecasting thunderstorms, classified PWVbased equations for forecasting severe thunder cases and all types of convective weather. The optimal combination method of severe convective potential forecasting based on the classification of key convection parameters has been used in routine application of numerical weather prediction model outputs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

周方媛,戴建華,陳雷.基于關(guān)鍵對(duì)流參數(shù)分級(jí)的強(qiáng)對(duì)流潛勢(shì)預(yù)報(bào)[J].氣象科技,2020,48(2):229~241

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-04-01
  • 定稿日期:2019-08-27
  • 錄用日期:
  • 在線發(fā)布日期: 2020-04-29
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
沁源县| 余干县| 天气| 宣汉县| 独山县| 华池县| 朝阳市| 丰原市| 平邑县| 崇礼县| 岱山县| 怀化市| 都兰县| 双流县| 郯城县| 都昌县| 龙泉市| 禹州市| 嘉禾县| 武汉市| 高州市| 新巴尔虎左旗| 永福县| 湘潭市| 泗阳县| 阆中市| 鄄城县| 广宗县| 黎平县| 南漳县| 鄂托克前旗| 兴山县| 吉木萨尔县| 泰来县| 桐乡市| 齐河县| 紫金县| 合山市| 沙洋县| 宜阳县| 民权县|