安徽省WRF模式短時強降水的預報檢驗
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省預報員專項kY201611資助


Capability of Forecasting Short Term Precipitation Based on WRF in Anhui
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用2005—2015年安徽省內1162個站點觀測資料簡要分析了短時強降水的時空分布特征,并利用中國氣象局CLDAS(CMA Land Data Assimilation System)近實時降水資料檢驗2012—2015年安徽省WRF(Weather Research and Forecast)模式對短時強降水的預報性能,探討不同空間插值方法、檢驗方法對預報效果的影響,以評估模式預報短時強降水的應用價值和使用注意事項。結果表明:短時強降水主要發(fā)生在大別山區(qū)和皖南山區(qū);一年中發(fā)生次數(shù)呈單峰分布,集中于6—8月;日變化呈雙峰狀,強峰為北京時間下午15:00—19:00,弱峰為06:00—09:00,兩個低谷分別為01:00、12:00前后。在兩分類評分TS(Threat Score)檢驗中,各個季節(jié)評分均十分低,插值方法對TS評分影響不大。鄰域法FSS評分(Fractions Skill Score)檢驗中,春季FSS評分低,最高僅可達15%,空間窗、時間窗、時間超前或滯后變化對FSS評分的影響不如夏季、秋季明顯;夏季,不考慮時間窗時,單獨的時間超前或滯后不能提高預報準確率;秋季,模式分別滯后1 h或滯后2 h預報結果優(yōu)于同期預報,而超前1 h或超前2 h預報結果低于同期預報,表明秋季W(wǎng)RF模式對短時強降水的預報有一定滯后性。

    Abstract:

    Based on the hourly rainfall data of 1162 stations in Anhui from 2005 to 2015, the spatial and temporal distribution characteristics of shortterm heavy rains are analyzed. The results show that shortterm heavy rainfall happens mainly in Tapieh Mountains and Wannan Mountains. The number of shortterm heavy rains changes in a singlepeak pattern annually, concentrated in June to August, and from October to next March, and shortterm heavy rainfall hardly happens. The diurnal change exhibits a doublepeak pattern: its stronger peak appearing from 15:00 to 19:00, and the weaker peak appearing from 06:00 to 09:00, while the two valleys around 01:00 and 12:00, respectively. Also, the capability of forecasting shortterm heavy rainfall based on the WRF model is estimated in different interpolation and assessment methods. The Threat Scores (TS), calculated in different interpolation methods, are all under 2%, and there is little difference among them. The Fractions Skill Score (FSS), a neighborhoodbased verification measure, is also used to assess the skill of forecast. The study shows that FSS varies with seasons, the space and time windows, and time bias. FSS in spring is the lowest, under 15%; it is more faintly affected by time bias, spatial and temporal neighborhoods than those in summer and autumn. In summer, the FSS curves, without temporal neighborhoods, are much similar, and obviously below those with temporal neighborhoods. In autumn, the model FSS with 1 to 2 hours later is higher than synchronous FSS, while FSS with 1 to 2 hours ahead is lower, which also happens in spring, but not so clear.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳瑞姣,邱學興,周昆,魏凌翔.安徽省WRF模式短時強降水的預報檢驗[J].氣象科技,2020,48(2):254~262

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-04-04
  • 定稿日期:2019-07-25
  • 錄用日期:
  • 在線發(fā)布日期: 2020-04-29
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發(fā)展有限公司
甘南县| 开平市| 西乡县| 无极县| 天柱县| 永善县| 独山县| 嘉定区| 舞阳县| 岑溪市| 当雄县| 和林格尔县| 罗源县| 澄迈县| 玉溪市| 申扎县| 犍为县| 剑川县| 垦利县| 扶余县| 朝阳县| 南开区| 靖宇县| 屏东市| 鄂托克旗| 石林| 阳泉市| 奎屯市| 洛扎县| 临海市| 噶尔县| 盖州市| 观塘区| 浦北县| 格尔木市| 北海市| 新竹县| 丰城市| 兴义市| 三河市| 社旗县|