基于IBAM指數(shù)的重慶地區(qū)空氣污染氣象條件預(yù)報(bào)方法
DOI:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金重大研究計(jì)劃重點(diǎn)支持項(xiàng)目“冬春季四川盆地西南渦活動(dòng)對(duì)大氣復(fù)合污染影響與機(jī)制研究”(91644226)資助


Forecast Method of Meteorological Conditions of Air Pollution in Chongqing Based on IBAM Index
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    通過重慶城區(qū)2013—2016年空氣質(zhì)量指數(shù)AQI與氣象要素的相關(guān)分析,引入表征大氣溫濕狀態(tài)的物理量總溫度、比濕、近地層風(fēng)速、24 h變壓及大氣低層總溫度差,構(gòu)建新的空氣污染氣象條件指數(shù)IBAM(Index Between Air pollution and Meteorology)。應(yīng)用2013年4月1日至2016年12月31日歐洲中心預(yù)報(bào)產(chǎn)品計(jì)算重慶地區(qū)歷史IBAM指數(shù),通過K均值聚類分析,引入極端天氣事件概念確定空氣污染氣象條件閾值,建立預(yù)報(bào)模型。利用IBAM指數(shù)與滯后1天AQI建立擬合曲線方程,計(jì)算出AQI預(yù)報(bào)值,計(jì)算預(yù)報(bào)準(zhǔn)確率,經(jīng)過2017年1月1日至2018年9月1日樣本檢驗(yàn),72 h內(nèi)預(yù)報(bào)準(zhǔn)確率在70%左右。通過誤差分析發(fā)現(xiàn):當(dāng)氣象條件為大氣污染物濃度主要影響因素且在大氣污染源變化不明顯時(shí),預(yù)報(bào)誤差較小;而當(dāng)大氣污染源變化明顯時(shí),預(yù)報(bào)誤差較大。該預(yù)報(bào)方法已在重慶市氣象臺(tái)業(yè)務(wù)應(yīng)用,對(duì)預(yù)防和處理重污染事件,改善重慶地區(qū)空氣質(zhì)量有較好參考價(jià)值。

    Abstract:

    A new technique for forecasting meteorological conditions of air pollution is developed by the analysis based on Air Quality Index (AQI) of PM2.5 from 2013 to 2016. According to the correlation analysis between AQI and meteorological factors, the IBAM (Index Between Air pollution and Meteorology) is built by four factors (specific humidity, surface wind velocity, surface pressure change in 24 hours, and the difference of total temperature between two levels in the lower troposphere) from 2013 to 2016 in Chongqing. Then the past IBAM is attained by use of the EC numerical forecast products from 1 April 2013 to 31 〖JP2〗December 2016, and the prediction model of meteorological conditions is established by introducing the concepts of extreme weather events and Kmeans cluster analysis. The fitting curve equation between IBAM and AQI of 1day lagging can be used to calculate the forecast value of AQI; then according to the ranking standards of air quality, the forecasting accuracy of air pollution grades in 72h prediction reaches about 70% by a test with the samples of nearly two years (from 1 January 2017 to 1 September 2018). Through the error analysis of two air pollution events, the results show that the prediction of air pollution grades is relatively well when the meteorological condition is the major factor impacting the spread of the pollutants in atmosphere or the change of air pollution sources is not obvious (local accumulation as main air pollution mode). However, the prediction errors increase evidently when the change of air pollution sources is relatively remarkable because of upstream transportation. This forecast technique is applied in the realtime prediction services in the Chongqing Meteorological Observatory, which has important reference value for preventing heavy air pollution events and improving air quality in Chongqing.〖JP〗

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

胡春梅,陳道勁,周國(guó)兵,王式功.基于IBAM指數(shù)的重慶地區(qū)空氣污染氣象條件預(yù)報(bào)方法[J].氣象科技,2020,48(5):741~751

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-10-30
  • 定稿日期:2019-12-18
  • 錄用日期:
  • 在線發(fā)布日期: 2020-10-26
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
岢岚县| 汕尾市| 扬中市| 姜堰市| 马龙县| 邵阳市| 福鼎市| 来宾市| 甘洛县| 清水县| 安徽省| 平顺县| 巴林左旗| 兰坪| 河东区| 巴林左旗| 城固县| 益阳市| 长春市| 承德县| 彝良县| 双鸭山市| 霸州市| 吉水县| 墨脱县| 清丰县| 治多县| 普安县| 永和县| 青岛市| 罗城| 唐河县| 青铜峡市| 汾西县| 阜宁县| 南昌县| 通山县| 吉首市| 凤山县| 巫溪县| 惠来县|