多種再分析地面氣溫資料在江西省的適用性
DOI:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(41965008)、江西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(20192BBFL60040)、江西省氣象科技項(xiàng)目(JMTF20180407)共同資助


Applicability Assessment of Surface Air Temperature from JRA55, ERA-Interim, ERA5 and MERRA2 Reanalysis Products over Jiangxi Province
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為評(píng)估不同再分析地面氣溫資料的適用性和模擬精度,采用雙線性?xún)?nèi)插法將JRA55、ERAInterim、ERA5和MERRA2等再分析地面氣溫資料降尺度至氣象觀測(cè)站,評(píng)估其對(duì)實(shí)測(cè)氣溫的平均態(tài)(平均偏差、均方根誤差、相關(guān)性分析)、趨勢(shì)態(tài)(年際趨勢(shì))和極端態(tài)(高溫日數(shù)、低溫日數(shù))的再現(xiàn)能力。通過(guò)在江西省的對(duì)比分析,結(jié)果表明:①利用鄰近格點(diǎn)氣溫和高度值計(jì)算的逐時(shí)氣溫垂直遞減率具有合理的波動(dòng)范圍以及季節(jié)性周期,適用于復(fù)雜地形下逐時(shí)再分析資料的內(nèi)插訂正;②訂正后JRA55地面氣溫資料的均方根誤差最小,MERRA2其次,ERAInterim和ERA5最大;③從氣溫年際變化趨勢(shì)來(lái)看,JRA55、ERAInterim和ERA5增溫速率與實(shí)測(cè)值較為一致,且JRA55對(duì)增溫中心的刻畫(huà)更優(yōu);④4種再分析資料均能再現(xiàn)高、低溫日數(shù)的年際波動(dòng),但JRA55在量級(jí)上描述最優(yōu)。綜上,再分析地面氣溫資料的適用性JRA55>ERAInterim>ERA5>MERRA2,JRA55再分析資料能較好地再現(xiàn)氣溫實(shí)際觀測(cè)資料。

    Abstract:

    In order to evaluate the performance of reanalysis surface temperature over Jiangxi Province, the gridded temperature data of the JRA55, ERAInterim, ERA5 and MERRA2 reanalysis models during 1980-2017 is topographically modified and interpolated to the station level by the bilinear interpolation method, to examine the applicability over observed temperature in terms of meanstate deviations (bias, root mean square error and correlation analysis), annual trend and extreme temperature events (the number of high/low temperature days). The results show that the lapse rate of air temperature calculated in the study has a reasonable range and seasonal cycle, and is suitable for the topographical correction for hourly data interpolation. Based on the topographically modified results, JRA55 has the lowest bias and root mean square error, followed by MERRA2, ERAInterim and ERA5. As for the tendency, JRA55, ERAInterim and ERA5 are consistent with observation in magnitude, while JRA55 has better capacity in capturing the spatial distribution of the warming. In the perspective of extreme temperature events, the four set of reanalysis data can reproduce the annual fluctuations, but only JRA55 shows closest magnitude to the observation. As a conclusion, the applicability is: JRA55>ERAInterim>ERA5>MERRA2.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李翔翔,黃淑娥,楊軍,秦曉晨.多種再分析地面氣溫資料在江西省的適用性[J].氣象科技,2020,48(6):877~886

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-18
  • 定稿日期:2020-05-18
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-28
  • 出版日期: 2020-12-31
您是第位訪問(wèn)者
技術(shù)支持:北京勤云科技發(fā)展有限公司
沙湾县| 裕民县| 桃源县| 武夷山市| 大丰市| 将乐县| 库尔勒市| 孝感市| 湟中县| 万荣县| 洛扎县| 桃园市| 威海市| 韶关市| 惠东县| 荥阳市| 镇平县| 克山县| 连云港市| 康平县| 合江县| 汝州市| 棋牌| 嘉黎县| 漯河市| 广汉市| 建瓯市| 合江县| 朝阳区| 茂名市| 布尔津县| 尚志市| 衡阳县| 宁河县| 鄄城县| 九龙坡区| 榆林市| 民和| 余姚市| 陈巴尔虎旗| 宁晋县|