基于機器學習技術的蒸發(fā)皿蒸發(fā)量估算模型
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

秦嶺和黃土高原生態(tài)環(huán)境氣象重點實驗室開放研究基金課題(2020G11)資助


Estimation Model of Pan Evaporation Based on Machine Learning Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了彌補國家級氣象觀測站小型蒸發(fā)皿停止觀測后蒸發(fā)量觀測資料的空缺,建立了陜北、關中和陜南3個區(qū)域數(shù)據(jù)集以及榆林、涇河和漢中3個單站數(shù)據(jù)集,通過建立和優(yōu)化KNN、MLP模型及其參數(shù),分別建立蒸發(fā)量區(qū)域估算模型、單站估算模型并對其進行檢驗。結果表明:①進行區(qū)域蒸發(fā)量估算時,KNN模型表現(xiàn)出良好的泛化性能,均方誤差、總相對誤差和準確率指標值平均分別為0.42、2.1%、57.0%;陜北MLP模型的泛化性能較差;②進行單站蒸發(fā)量估算時,基于k近鄰法的單站估算模型性能優(yōu)于區(qū)域估算模型,均方誤差、準確率指標值平均分別為0.48、55.0%,榆林與涇河總相對誤差指標絕對值平均為1.6%,漢中總相對誤差指標值相對偏高,達到103%。本研究為不同氣候區(qū)域及單站日、月、季和年蒸發(fā)皿蒸發(fā)量估算以及日蒸發(fā)量數(shù)據(jù)質量控制提供了一種基于機器學習的方法。

    Abstract:

    In order to make up for the lack of evaporation data after the stop of evaporation pan manual observations at the National Meteorological Observatory, three regional datasets of the northern Shaanxi, Guanzhong and southern Shaanxi and three single station datasets of Yulin, Jinghe and Hanzhong are established. By establishing and optimizing the KNN (KNearest Neighbor method) and MLP (MultiLayer Perceptron) models and its parameters, the regional estimation model of evaporation and the single station estimation model are constructed and verified respectively. The results show that: (1) While estimating the regional evaporation, the KNN model shows good generalization performance, and the average Mean Square Error, Total Relative Error and Correct Rate values are 0.42 and 2.1%, 57.0%, respectively; the generalization performance of the MLP model in the northern Shaanxi is poor. (2) While estimating the evaporation of a single station, the performance of the single station estimation model based on the Knearest neighbor method is superior to the regional estimation model, and the average Mean Square Error and Correct Rate index values are 0.48 and 55.0%, the absolute average value of Total Relative Error at Yulin and Jinghe 1.6%, and that at Hanzhong is relatively high, reaching 10.3%. This research provides a tool based on the Machine Learning for the estimation of daily, monthly, seasonal and annual evaporation in different climate regions and single stations and the quality control of daily evaporation data.

    參考文獻
    相似文獻
    引證文獻
引用本文

龍亞星,黃勤,李成偉.基于機器學習技術的蒸發(fā)皿蒸發(fā)量估算模型[J].氣象科技,2021,49(2):166~173

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-05-29
  • 定稿日期:2020-09-08
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-25
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發(fā)展有限公司
福安市| 嵊州市| 思南县| 历史| 九龙坡区| 嘉黎县| 乐昌市| 通州区| 崇仁县| 梅州市| 象山县| 南京市| 都昌县| 铜鼓县| 禹城市| 青州市| 鄱阳县| 房产| 平凉市| 遂川县| 娱乐| 正阳县| 汪清县| 西昌市| 将乐县| 万荣县| 温宿县| 潮州市| 醴陵市| 达拉特旗| 清涧县| 济南市| 汶川县| 密山市| 呈贡县| 正阳县| 敦化市| 广河县| 多伦县| 栖霞市| 上蔡县|