云南夏季降水異常的影響因子及物理統(tǒng)計預測方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

云南省普洱市氣象局李崇銀院士工作站(2018IC150)、云南省普洱學院創(chuàng)新團隊(CXTD003)共同資助


Influencing Factors and Physical Statistical Prediction Methods of Summer Rainfall Anomaly in Yunnan
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    云南夏季降水年際變化較大,影響因子眾多,夏季降水的預測較為困難。使用1965—2017年云南省122個氣象觀測站的逐日降水資料和NCEP大氣環(huán)流資料,采用年際增量的方法來預測云南夏季降水。文中基于云南夏季降水年際增量變化規(guī)律和影響夏季降水的環(huán)流形勢及物理過程,選取了6個具有物理意義的預測因子,包括:前期2月南太平洋海溫異常、前期2月東亞北部海平面氣壓異常、前期4月北美500 hPa 位勢高度異常、前期5月太平洋北部海平面氣壓異常、前期1月印度半島北部500 hPa 位勢高度異常及前期2月澳洲以南地區(qū)200 hPa高度場偶極子異常,來建立云南夏季降水預測模型。并對預測模型進行逐年交叉檢驗和1998—2017年逐年獨立樣本檢驗。交叉檢驗中夏季降水年際增量預測值和觀測值的相關系數為0.85,相對均方根誤差為8.0%。回報檢驗中夏季降水年際增量的相對均方根誤差為9.1%,63.0%的異常年份預測值能夠準確地預報出夏季降水異常。該預測模型有較好的預測能力。

    Abstract:

    Because of the obvious interannual variation of summer precipitation in Yunnan and various influencing factors, it is difficult to predict summer precipitation. The daily precipitation observation data from 122 meteorological stations in Yunnan Province from 1965 to 2017 and NCEP atmospheric circulation data and the yeartoyear increment method are used to predict summer precipitation in Yunnan. In order to provide a theoretical basis for the prediction of summer precipitation in Yunnan, it is indispensable to analyze the varying regularities and physical processes affecting the yeartoyear increments of summer rainfall and atmospheric circulation. The prediction model is established based on the method of multiple linear regression analysis. Six predictors that have explicitly physical meaning are selected: the anomaly of the SST (Sea Surface Temperature) in the South Pacific in February, SLP (Sea Level Pressure) in Northeast Asia in February, 500 hPa geopotential height in May over the North America in April, SLP in the northern Pacific in May, 500 hPa geopotential height in the northern India in January, and 200 hPa geopotential height in South Australia in February. Using the above six predictors, the prediction model of summer rainfall is established. In addition, not only the crossingtest verification is conducted on the prediction model is with the independent samples from 1965 to 2017, but also the prediction test verification is conducted from 1998 to 2017. In the crossingtest verification, the correlation coefficients between predicted and observed interannual increments of summer rainfall is 0.85, and the root mean square relative error is 8.0%. In the prediction test verification, the root mean square relative error of is 9.1%. The prediction model makes good predictions, about 63.0% of the summer rainfall anomaly. The prediction model shows satisfactory forecasting ability.

    參考文獻
    相似文獻
    引證文獻
引用本文

王秀英,王俊杰.云南夏季降水異常的影響因子及物理統(tǒng)計預測方法[J].氣象科技,2021,49(2):200~210

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2019-12-11
  • 定稿日期:2020-11-13
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-25
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發(fā)展有限公司
扶风县| 沧源| 秀山| 方城县| 云南省| 饶河县| 谢通门县| 岗巴县| 大余县| 海盐县| 武夷山市| 大田县| 沁源县| 紫云| 独山县| 安图县| 沧源| 鹤岗市| 黔东| 北辰区| 乌鲁木齐县| 昌吉市| 辽源市| 仪陇县| 瓦房店市| 措美县| 淮滨县| 沈丘县| 汝南县| 浦县| 周至县| 哈巴河县| 东光县| 左权县| 东丰县| 枣强县| 银川市| 阿勒泰市| 醴陵市| 黄石市| 黑河市|