GRAPES-GEPS K-均值集合預(yù)報(bào)產(chǎn)品開發(fā)及應(yīng)用
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

冬奧會氣象條件預(yù)測保障關(guān)鍵技術(shù)(2018YFF0300103)、中國氣象局?jǐn)?shù)值預(yù)報(bào)中心青年基金(400441)、國家自然科學(xué)基金青年基金項(xiàng)目(41906022)資助


Development and Application of K-means Ensemble Prediction Product Based on GRAPES-Global Ensemble Prediction System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于GRAPES全球集合預(yù)報(bào)系統(tǒng)(GRAPESGEPS)及2020年2月13—16日的全國寒潮天氣過程,開發(fā)出一類新的集合預(yù)報(bào)產(chǎn)品—K均值聚類產(chǎn)品。采用爬山法確定最佳聚類數(shù)量,并采用K均值聚類算法對集合樣本進(jìn)行分類。結(jié)果表明,該方法的500 hPa位勢高度場所有類別的聚類產(chǎn)品均呈現(xiàn)出中高緯Ω形的環(huán)流形勢及低壓系統(tǒng)后部冷平流的走向,發(fā)生概率最高的聚類產(chǎn)品最能反映實(shí)況中環(huán)流形勢的分布。對于850 hPa溫度場,其聚類產(chǎn)品均呈現(xiàn)出全國溫度從北到南呈帶狀逐漸增加的空間分布特征,發(fā)生概率最高的第一類聚類產(chǎn)品與實(shí)況最為接近。對于10 m風(fēng)速聚類產(chǎn)品,在較大風(fēng)速處,集合樣本離散度較大,不同類別的風(fēng)速大小差異顯著;發(fā)生概率較高的第一類聚類產(chǎn)品,其對天津及周邊地區(qū)10 m風(fēng)速的分布及強(qiáng)度描述均較準(zhǔn)確,并能提供有價(jià)值的預(yù)報(bào)信息。K均值聚類能有效地實(shí)現(xiàn)集合預(yù)報(bào)樣本信息的濃縮,該產(chǎn)品可為預(yù)報(bào)員判斷某一時(shí)次的天氣預(yù)報(bào)提供直觀指導(dǎo)。

    Abstract:

    Based on the GRAPESGlobal Ensemble Forecast System (GRAPESGEPS), and the nationwide coldwave process from 13 to 16 February 2020, the Kmeans cluster products are developed. In this paper, the Sum of the Squared Errors (SSE) criterion function is applied to determine the most appropriate clustering numbers and the Kmeans cluster algorithm is used to classify the ensemble samples. Results indicate that, all types of Kmeans cluster products related to the 500 hPa geopotential height present the Ωshaped circulation situation and the cold advection situation behind the lowpressure system. In addition, Type 1 clustering products with the highest probability reflect the observed circulation situation most efficiently. For 850 hPa temperature, all categories can present the spatial characteristics of 850 hPa temperature, which increase gradually from North China to South China. In addition, Type 1 clustering products with the highest probability can reflect the spatial distribution of 850 hPa temperature and possess the least errors related to the observation. For 10 m wind speed clustering products, at higher wind speeds, the dispersion of the aggregate samples is larger, and the wind speeds of different kinds have significant differences. The Type 1 clustering products with the highest probability can reflect the spatial distribution and intensity of 10 m wind speed in Tianjin and its surrounding areas exactly and provide valuable prediction information for forecasters. With Kmeans cluster results, we can realize the aggregation of forecast sample information and provide the intuitive guidance of weather prediction for the forecasters.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

齊倩倩,佟華,陳靜. GRAPES-GEPS K-均值集合預(yù)報(bào)產(chǎn)品開發(fā)及應(yīng)用[J].氣象科技,2021,49(4):542~551

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-27
  • 定稿日期:2021-01-04
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-23
  • 出版日期: 2021-08-31
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
万山特区| 电白县| 衡东县| 包头市| 宾阳县| 峨山| 吉水县| 阿勒泰市| 通山县| 南汇区| 上思县| 秭归县| 平乐县| 盐山县| 紫阳县| 天峨县| 莱西市| 太谷县| 凯里市| 中山市| 安泽县| 浦北县| 阿勒泰市| 富锦市| 南宫市| 永川市| 土默特左旗| 莱州市| 吴桥县| 右玉县| 宁远县| 师宗县| 拜城县| 曲阳县| 灌南县| 滁州市| 湖北省| 应城市| 吉林省| 金华市| 凤台县|