CLDAS和GLDAS土壤溫度數(shù)據(jù)在陜西省的適用性評估
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃重大自然災(zāi)害監(jiān)測預(yù)警與防范專項(xiàng)(2018YFC1506606)、內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)目(201602103)、內(nèi)蒙古自治區(qū)氣象局科技創(chuàng)新項(xiàng)目(nmqxkjcx201702、nmqxkjcx201806)資助


Applicability Evaluation of CLDAS and GLDAS Soil Temperature Data in Shaanxi Province
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用陜西省2016年97站逐日5 cm土壤溫度觀測數(shù)據(jù),結(jié)合相關(guān)系數(shù)、平均偏差和均方根誤差等統(tǒng)計(jì)參數(shù),評估了中國氣象局陸面數(shù)據(jù)同化系統(tǒng)CLDAS2.0和美國全球陸面數(shù)據(jù)同化系統(tǒng)不同陸面模式(NoahGLDAS2.1,NoahGLDAS1,CLMGLDAS1)土壤溫度數(shù)據(jù)在陜西省的適用性。結(jié)果表明:①CLDAS2.0在陜西省的相關(guān)系數(shù)最高,均方根誤差最小,NoahGLDAS2.1次之,NoahGLDAS1最差。②從陜西省3個(gè)區(qū)域的時(shí)間演變序列的分析可以看到,CLDAS2.0和NoahGLDAS2.1能很好模擬出土壤溫度的季節(jié)變化以及日變化,NoahGLDAS1、CLMGLDAS1對于日變化的模擬較差,且前兩者偏差也明顯小于后兩者。③NoahGLDAS2.1在陜北與關(guān)中地區(qū)土壤溫度模擬能力與CLDAS2.0相差無幾,但在陜南地區(qū)CLDAS2.0要好于NoahGLDAS2.1。總體來看,CLDAS2.0對陜西省土壤溫度模擬能力最好,在陜西省有著更好的適用性。

    Abstract:

    Based on the daily 5cm soil temperature data observed by 97 meteorological stations in Shaanxi Province in 2016, combined with statistical parameters such as correlation coefficient, average deviation and root mean square error, the applicability of CMA (China Meteorological Administration) Land Data Assimilation System (CLDAS 2.0) and American Global Land surface Data Assimilation System (NoahGLDAS 2.1, NoahGLDAS1, CLMGLDAS 1) soil temperature data in Shaanxi Province was evaluated. The results show that: (1) CLDAS 2.0 had the highest correlation coefficient and the smallest rootmeansquare error in Shaanxi Province, followed by NoahGLDAS 2.1 and NoahGLDAS 1. (2) From the analysis of the time evolution series of three regions in Shaanxi Province, it can be seen that CLDAS 2.0 and NoahGLDAS 2.1 can well simulate the seasonal and daily changes of soil temperature, and the simulations of daily changes of NoahGLDAS 1 and CLMGLDAS 1 are poor, and the deviations of the former two are significantly less than those of the latter two. (3) The soil temperature simulation ability of NoahGLDAS 2.1 in the northern Shaanxi and Guanzhong area is similar to that of CLDAS 2.0, but that of CLDAS 2.0 in the southern Shaanxi area is better than that of NoahGLDAS 2.1. Generally speaking, CLDAS 2.0 has the best ability to simulate soil temperature, and has better applicability in Shaanxi Province.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉佩佩,宋海清,鮑煒煒,李靜睿. CLDAS和GLDAS土壤溫度數(shù)據(jù)在陜西省的適用性評估[J].氣象科技,2021,49(4):604~611

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-05
  • 定稿日期:2021-01-13
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-23
  • 出版日期: 2021-08-31
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
定结县| 临清市| 邹平县| 慈利县| 临安市| 兰溪市| 开江县| 中超| 隆回县| 沙雅县| 北流市| 灌阳县| 饶平县| 林芝县| 襄樊市| 章丘市| 永胜县| 常熟市| 乐昌市| 漳浦县| 韶山市| 政和县| 定州市| 奎屯市| 永德县| 金溪县| 磴口县| 伊宁市| 铁力市| 紫阳县| 安阳市| 台湾省| 揭阳市| 宁武县| 缙云县| 广元市| 米泉市| 吴堡县| 景洪市| 辛集市| 洞头县|