FY-4衛(wèi)星資料在青藏高原地區(qū)積雪判識(shí)和雪深反演中的應(yīng)用
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

西藏自治區(qū)科技計(jì)劃項(xiàng)目(XZ202102YD0012C)、內(nèi)蒙古自治區(qū)科技計(jì)劃項(xiàng)(2021GG0019)、四川省科技計(jì)劃項(xiàng)目(2022YFS0490)、青海省防災(zāi)減災(zāi)重點(diǎn)實(shí)驗(yàn)室開放基金項(xiàng)目(QFZ-2021-Z11)資助


Application of FY-4 satellite Data in Snow Cover Identification and Snow Depth Inversion in Qinghai-Tibet Plateau
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    青藏高原積雪監(jiān)測(cè)在地球輻射平衡、全球氣候變化和生態(tài)環(huán)境等方面有重要作用,對(duì)氣候預(yù)測(cè)、雪災(zāi)預(yù)測(cè)等具有重要意義。FY-4(風(fēng)云4號(hào))衛(wèi)星數(shù)據(jù)具有高時(shí)空分辨率的優(yōu)勢(shì),基于FY-4A(風(fēng)云4號(hào)A星)構(gòu)建積雪監(jiān)測(cè)方法與模型,不僅拓展了靜止衛(wèi)星應(yīng)用領(lǐng)域,也豐富了積雪監(jiān)測(cè)應(yīng)用的手段。FY-4的高時(shí)間分辨率為積雪監(jiān)測(cè)的研究提供了分鐘級(jí)數(shù)據(jù),對(duì)積雪與云的變化掌握的更為細(xì)致,但用于積雪監(jiān)測(cè)的波段,因分辨率不高容易導(dǎo)致錯(cuò)判與漏判。本文基于2020年小時(shí)級(jí)野外地面雪深觀測(cè)數(shù)據(jù)、風(fēng)云3號(hào)D星積雪覆蓋產(chǎn)品(FY-3D_SNC)數(shù)據(jù),構(gòu)建了基于歸一化積雪指數(shù)(Normalized Difference Snow Index,NDSI)的FY-4A衛(wèi)星積雪判識(shí)方法,提出了雪深監(jiān)測(cè)模型與等級(jí)劃分指標(biāo)。結(jié)果表明:NDSI≥0.20是青藏高原地區(qū)FY-4A衛(wèi)星積雪判識(shí)的適用閾值,無論有云或無云條件,其漏判率均低于8.0%。地面站點(diǎn)驗(yàn)證結(jié)果表明,積雪判識(shí)準(zhǔn)確率達(dá)83.33%以上。空間范圍內(nèi)直接剔除云區(qū)后,積雪判識(shí)經(jīng)混淆矩陣驗(yàn)證準(zhǔn)確率在82.48%以上。因此,F(xiàn)Y-4A衛(wèi)星在青藏高原地區(qū)具有積雪監(jiān)測(cè)的能力。雖然FY-4A衛(wèi)星對(duì)超過10 cm以上雪深不具備區(qū)分能力,但可以較好地識(shí)別10 cm以下淺雪雪深,相關(guān)系數(shù)達(dá)到0.745,通過了0.001顯著性水平檢驗(yàn)。據(jù)此建立的FY-4A衛(wèi)星0~10 cm雪深等級(jí)指標(biāo),總體分級(jí)精度達(dá)到87.50%。FY-4A衛(wèi)星雪深反演方法在青藏高原地區(qū)對(duì)0~10 cm淺雪雪深有較好的估算能力。

    Abstract:

    Monitoring the snow cover on the Qinghai Tibet Plateau holds great significance for climate prediction and snow disaster prediction, among other things. With its high temporal resolution and high spatial resolution, FY-4 data is providing a new field in snow monitoring service by geostationary satellite. Constructing snow monitoring methods and models based on FY-4A not only expands the application field of geostationary satellites but also enriches the means of snow monitoring application. The high temporal resolution of FY-4 provides minute-level data for research on snow monitoring, offering a more detailed understanding of changes in snow cover and clouds. To facilitate application for producers and reference for decision-makers, and to further improve the accuracy of snow depth inversion products, this paper is based on the hourly field snow depth observation data, daily FY-3D_SNC data, and the hourly FY-4A satellite data. A snow identification method based on NDSI (Normalized Difference Snow Index) is being constructed, as well as a snow depth monitoring model. In the end, referring to the existing snow depth classification standards on the Qinghai Tibet Plateau, a classification standard for snow depth levels in shallow snow areas using FY-4 satellite is proposed, based on NDSI and the linear estimation equation of snow depth. Mapping examples of different snow depth levels in plateau areas have been completed to better provide reference for practical business monitoring services and applications. The results show that NDSI≥0.20 is the reasonable threshold for FY-4A satellite snow detection in the Qinghai Tibet Plateau region, with a missing detection rate of less than 8.0% regardless of cloud conditions. The ground station verification results show that the accuracy of snow recognition is over 83.33%. After the cloud is directly removed in the spatial range, the accuracy of snow identification is more than 82.48%, verified by the confusion matrix. Therefore, the FY4 satellite has the ability to monitor snow cover in the Qinghai Tibet Plateau region. Although the FY-4A satellite does not have the ability to distinguish snow depths exceeding 10 cm, it can effectively identify shallow snow depths below 10 cm, with a correlation coefficient of 0.745, passing the 0.001 significance level. As a result, the FY-4A satellite snow depth level index of 0 to 10 cm has been established, with an overall classification accuracy of 87.50%. Hence, the FY-4A satellite snow depth inversion method has good estimation ability for 0 to 10 cm shallow snow depths in the Qinghai Tibet Plateau region.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王淇玉,徐維新,扎西央宗,黃坤琳,代娜,肖強(qiáng)智,段旭輝,梁好. FY-4衛(wèi)星資料在青藏高原地區(qū)積雪判識(shí)和雪深反演中的應(yīng)用[J].氣象科技,2023,51(5):613~628

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-09-18
  • 定稿日期:2023-04-18
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-01
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
沈阳市| 渝中区| 宜丰县| 古浪县| 乡城县| 贺兰县| 巴林左旗| 漯河市| 德保县| 大邑县| 青川县| 江门市| 乐安县| 崇文区| 赤水市| 阳信县| 锦州市| 广河县| 彝良县| 聊城市| 孙吴县| 资阳市| 福鼎市| 西贡区| 苍溪县| 大宁县| 祁阳县| 塘沽区| 莒南县| 英超| 新乡县| 清新县| 延川县| 金湖县| 忻城县| 府谷县| 基隆市| 驻马店市| 成武县| 祥云县| 卢氏县|