基于機(jī)器學(xué)習(xí)技術(shù)的黃山風(fēng)景區(qū)及周圍雷電臨近預(yù)報(bào)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC1507802),安徽省氣象局創(chuàng)新發(fā)展專項(xiàng)(CXM202207)資助


Lightning Nowcasting Method in Huangshan Scenic Spot and Its Surroundings Based on Machine Learning Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為探究影響山岳型景區(qū)雷電發(fā)展的關(guān)鍵因素,實(shí)時(shí)掌握黃山風(fēng)景區(qū)及周圍雷電發(fā)展趨勢(shì),采用多普勒天氣雷達(dá)、氣象探空、閃電定位等多種監(jiān)測(cè)數(shù)據(jù),根據(jù)雷電發(fā)生基本物理原理,從系統(tǒng)強(qiáng)度、旺盛程度和移動(dòng)趨勢(shì)3個(gè)方面提取雷達(dá)回波特征作為關(guān)鍵預(yù)報(bào)因子,基于多種機(jī)器學(xué)習(xí)算法建立了雷電臨近預(yù)報(bào)模型,結(jié)果表明:隨機(jī)森林(RF)、邏輯回歸(LR)、K-臨近(KNN)、貝葉斯(GNB)、支持向量機(jī)(SVM)5種機(jī)器學(xué)習(xí)算法均對(duì)雷電具有一定臨近預(yù)報(bào)能力,RF的TS最高,SVM漏報(bào)率最低,LR空?qǐng)?bào)率最低;在RF算法中雷暴系統(tǒng)強(qiáng)度和發(fā)展旺盛程度兩類因子起主要作用,其中作用最大的是雷暴系統(tǒng)強(qiáng)度中-20 ℃層高度雷達(dá)基本反射率,其次是0 ℃層以上回波厚度。

    Abstract:

    Lightning disasters are now recognised as one of the top ten most severe natural calamities, being particularly frequent in mountainous areas. The continuous growth of tourism has led to significant impacts on tourists and cable cars, especially in mountainous scenic areas, where equipment like cable cars are highly sensitive to lightning. To investigate the key factors influencing lightning development in these regions and to promptly understand the trends in lightning activity in and around the Huangshan Scenic Area, we are leveraging multiple monitoring data, such as Doppler weather radar, meteorological soundings, and lightning detection. In this study, we are building and evaluating multiple lightning nowcasting models using different machine learning algorithms. The models are based on the non-inductive charging mechanism in the thunderstorm and the characteristics of Doppler weather radar echo. We are extracting echo characteristics of the Doppler weather radar as key forecasting factors, focusing on the intensity, vigour, and movement trends of the thunderstorm system. By comparing false alarm rates, missed alarm rates, and TS scores of various machine learning algorithms, we are selecting the most suitable forecast method for mountainous scenic areas. Our evaluation results reveal that the Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbour (KNN), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM) algorithms all have certain nowcasting capabilities for lightning. The RF algorithm scores highest in TS scoring, the SVM has the lowest missed alarm rate, and LR has the lowest false alarm rate. Among these, the intensity and vigorous development of the thunderstorm system play a pivotal role in the RF algorithm, with the radar base reflectivity at the -20 ℃ layer height in the thunderstorm system intensity having the most influence, followed by the radar echo thickness above the 0 ℃ layer. Taking an example on 29 August 2021, when a large-scale intense thunderstorm occurred in and around the Huangshan Scenic Area in the afternoon. Employing the RF method resulted in a false alarm rate of 0.425, a missed alarm rate of 0.378, and a TS score of 0.426, indicating good forecasting performance in the area.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

姚葉青,王傳輝,慕建利,張蕾,王麗娟.基于機(jī)器學(xué)習(xí)技術(shù)的黃山風(fēng)景區(qū)及周圍雷電臨近預(yù)報(bào)方法[J].氣象科技,2023,51(5):747~754

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-08-25
  • 定稿日期:2023-05-25
  • 錄用日期:
  • 在線發(fā)布日期: 2023-11-01
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
江口县| 梅河口市| 武川县| 南宫市| 金寨县| 克山县| 双城市| 泗水县| 永年县| 翼城县| 波密县| 富川| 铅山县| 莱西市| 洪江市| 永登县| 清徐县| 利川市| 锦屏县| 江孜县| 九龙城区| 会同县| 泗阳县| 和田市| 黄大仙区| 榕江县| 铜陵市| 临江市| 柳河县| 龙陵县| 湘乡市| 芜湖县| 丰原市| 张家川| 兴海县| 克拉玛依市| 惠水县| 怀化市| 蒙自县| 盘锦市| 淮阳县|