基于風云四號靜止氣象衛(wèi)星的局地對流智能化預(yù)警模型及應(yīng)用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金(41975031、42175086、U2142201)、中山大學高校基本業(yè)務(wù)費(22qntd1913)、廣東省氣候變化與自然災(zāi)害研究重點實驗室經(jīng)費(2020B1212060025)、風云衛(wèi)星應(yīng)用先行計劃項目(FYAPP2022.0113)資助


SWIPE Based on Fengyun-4 Geostationary Meteorological Satellite and Its Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    強對流等災(zāi)害性天氣給人民生活和社會經(jīng)濟發(fā)展造成了嚴重影響,準確理解強對流發(fā)生的機理及提高其預(yù)報效果仍然是具有挑戰(zhàn)性的工作。綜合利用我國自主研發(fā)的新一代地球靜止軌道氣象衛(wèi)星風云四號高時空分辨率觀測數(shù)據(jù)和中國氣象局全球數(shù)值預(yù)報(China Meteorological Administration- Global Forecast System, CMA-GFS)格點化產(chǎn)品,研究局地對流發(fā)生前大氣環(huán)境場的特征和關(guān)鍵影響因子的變化。分析表明:衛(wèi)星觀測得到的云頂凍結(jié)信息以及表征大氣的不穩(wěn)定性、水汽含量等數(shù)值模式變量是預(yù)測局地對流發(fā)生的重要因子。利用面積重疊法和光流法對云團進行連續(xù)追蹤,采用機器學習技術(shù)建立了中國區(qū)域局地對流發(fā)生和強度分級(弱、中、強)預(yù)警模型2.0版本(Storm Warning In Pre-convective Environment Version 2.0, SWIPE-V2.0),實現(xiàn)了局地對流的智能化預(yù)警。獨立檢驗結(jié)果表明:模型對6個不同分區(qū)的雨季8 mm/h以下強度降水相關(guān)的對流判識準確率在0.5~0.85,對8 mm/h以上強度降水相關(guān)的對流判識準確率在0.69~0.91之間,具有較好的提前預(yù)警效果和實際應(yīng)用價值。目前,SWIPE-V2.0已投入實時應(yīng)用。

    Abstract:

    Local severe convective storms significantly impact people’s lives and socio-economic development. Understanding the mechanism of severe convective storms and predicting the occurrence and development of local severe storms remains challenging. We investigate local severe convective storms’ environmental and thermodynamic characteristics in pre-convection environments by combining observations from China’s new-generation geostationary satellites (FY-4 series), which offer high spatial-temporal resolution, with numerical weather forecast products from the China Meteorological Administration (CMA) global forecast system (CMA-GFS). Furthermore, we explore how their changes impact the future development intensity of local convection. Results show a close association between cloud top cooling information from satellite observations and numerical prediction model variables, such as atmospheric instability and water vapour content, with convection storm occurrence and intensity. Changes in these factors closely relate to the future development intensity of local convection. The Storm Warning In Pre-convective Environment Version 2.0 (SWIPE-V2.0) system aims to predict the occurrence and intensity (weak, medium, and strong) of local severe storms in China. Established using machine-learning techniques, SWIPE-V2.0 employs the brightness temperature threshold method and area threshold method to identify the local convective cloud. Meanwhile, it uses the overlapping and optical flow methods to track the movement of the local convective cloud. The machine-learning model uses the CLDAS (Global Land Data Assistance System) data of the multi-source precipitation fusion dataset, obtained half an hour to one hour after the cloud cluster, as the training tag. Independent validation results reveal SWIPE-V2.0’s strong performance in early warning for local convective storms, with recognition rates of 0.5-0.85 for cases with precipitation below 8 mm/h and 0.69-0.91 for cases with precipitation above 8 mm/h in the rainy season across six different regions. In the non-rainy seasons, across the same regional spread, recognition rates are 0.53-0.98 for cases with precipitation below 8 mm/h and 0.77-0.99 for cases with precipitation above 8 mm/h. Early warning results from SWIPE-V2.0 on real-time local convection systems demonstrate its potential for near real-time applications, while also indicating its useful role in understanding the environmental factors associated with local severe storms across various weather regimes. Currently, we are utilising SWIPE-V2.0 in real-time applications.

    參考文獻
    相似文獻
    引證文獻
引用本文

李俊,閔敏,李博,韋曉澄,劉子菁,鄭永光,張小玲,覃丹宇,孫逢林,馬錚,王立志.基于風云四號靜止氣象衛(wèi)星的局地對流智能化預(yù)警模型及應(yīng)用[J].氣象科技,2023,51(6):771~784

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-11-14
  • 定稿日期:2023-09-12
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-28
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
景宁| 阳城县| 靖安县| 莱西市| 新野县| 河曲县| 鹿邑县| 怀宁县| 密云县| 普兰店市| 商都县| 崇左市| 吉木乃县| 营山县| 金溪县| 徐州市| 咸丰县| 基隆市| 扶余县| 通化市| 南安市| 九江县| 清远市| 宣汉县| 彭水| 东乡| 云南省| 类乌齐县| 澄江县| 化州市| 黎川县| 阿拉善右旗| 柳林县| 西吉县| 宁陕县| 吉首市| 桐城市| 师宗县| 同江市| 西畴县| 南安市|