杭州飛機(jī)氣象觀測(cè)資料處理及質(zhì)量分析
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

浙江省氣象科技計(jì)劃項(xiàng)目(項(xiàng)目編號(hào):2021YB14)資助


Data Processing and Quality Assessment of Aircraft Meteorological Observation around Hangzhou
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了更好地將全球共享的飛機(jī)氣象觀測(cè)資料(AMDAR資料)應(yīng)用于本地氣象業(yè)務(wù),解決由AMDAR資料時(shí)空分布不均勻帶來的應(yīng)用不便的問題,利用2019年4月至2020年5月杭州地區(qū)獲取的AMDAR資料,在質(zhì)量控制處理基礎(chǔ)上提出一種新的提取AMDAR廓線數(shù)據(jù)的處理方法,將機(jī)場(chǎng)周邊一定時(shí)間和空間范圍內(nèi)的飛機(jī)探測(cè)資料視作探空氣球漂移至不同位置的觀測(cè),垂直方向采用插值算法實(shí)現(xiàn)廓線數(shù)據(jù)均勻分布,并利用中值濾波算法對(duì)廓線做進(jìn)一步質(zhì)控。最終提取的AMDAR廓線數(shù)據(jù)與杭州探空數(shù)據(jù)進(jìn)行了對(duì)比誤差分析。結(jié)果表明:溫度、風(fēng)速和風(fēng)向的總體平均偏差分別為-0.83 ℃、0.02 m/s、0.47°,均方根誤差分別為1.93 ℃、2.02 m/s、25.05°,AMDAR溫度廓線數(shù)據(jù)整體偏小,且相對(duì)暖濕的季節(jié)比相對(duì)干冷的季節(jié)偏小更加明顯,AMDAR風(fēng)廓線數(shù)據(jù)無明顯系統(tǒng)誤差,數(shù)據(jù)質(zhì)量較好;溫度和風(fēng)速對(duì)比誤差在2000 m及以上高度范圍隨高度增加而增大,但風(fēng)向的對(duì)比誤差相反;環(huán)境風(fēng)速越大,風(fēng)速的對(duì)比誤差越大,風(fēng)向的對(duì)比誤差卻越小;AMDAR廓線數(shù)據(jù)與探空數(shù)據(jù)具有較好的一致性,但在02:00—06:00以及5000 m以上高度缺測(cè)較多。總體來看,本文提出的AMDAR廓線提取方法具有一定的應(yīng)用價(jià)值,能夠?yàn)锳MDAR資料在不同地區(qū)的應(yīng)用提供參考。

    Abstract:

    In order to more effectively apply the globally shared AMDAR (Aircraft Meteorological Data Relay) data in local meteorological operations and address the challenge stemming from the uneven spatio-temporal distribution of AMDAR data, this paper initially conducts quality control processing using AMDAR data from April 2019 to May 2020 around Hangzhou. This is carried out with reference to the aircraft meteorological observation quality control scheme of the NOAA in the United States and the National Meteorological Information Centre. Following this, a new method is proposed for extracting AMDAR profile data, taking into consideration the determination of the temporal, spatial representation, and vertical resolution of AMDAR data. This method views AMDAR data within a specific temporal and spatial range around the airport as analogous to the observations of a weather balloon drifting to different positions, thereby extracting temperature and wind vertical profiles based on specified temporal and spatial representativeness. In the vertical direction, the interpolation algorithm is utilised to achieve a uniform distribution of the profile, and median filtering algorithm is carried out on the obtained profile data for additional quality control. Our results from comparing the AMDAR profile data with Hangzhou radiosonde data demonstrate that the overall average differences in temperature, wind speed, and wind direction between the AMDAR data and radiosonde data in Hangzhou are -0.83 ℃, 0.02 m/s, and 0.47°respectively. The root mean square errors amount to 1.93 ℃ for temperature, 2.02 m/s for wind speed, and 25.05° for wind direction. There is a trend toward the AMDAR temperature profile data being smaller than the radiosonde temperature data, as a result of the systematic error of aircraft detection. It should be noted that this is more evident in relatively warm and wet seasons compared to relatively dry and cold seasons. Notably, the AMDAR wind profile data do not exhibit clear systematic error, which leaves the data quality in a satisfactory state. The comparison errors of temperature and wind speed are slightly realigned in the boundary layer height range of 0-1000 m compared to 1000-2000 m, which increase with the increase in height in the 2000 m and above range. However, the comparison error of wind direction drastically diminishes with the increase in height in the whole comparison height range. Furthermore, the higher the ambient wind speed, the greater the comparison error of wind speed, but the smaller the comparison error of wind direction. The AMDAR profile data and radiosonde data show a good level of agreement, although in terms of data integrity, there appear to be numerous missing measurements in 02:00-06:00 and above 5000 m. This is attributed to the limitations of aircraft detection influenced by specific flight times and routes. In conclusion, the AMDAR profile extraction method proposed in this paper elucidates the temporal and spatial representation of AMDAR profile data. Furthermore, by ensuring it is evenly distributed in time and height, this contributes to convenience in meteorological operations. This new AMDAR profile extraction method indeed holds certain application value and can offer a reference point for local application of AMDAR data in different regions.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

高祝宇,何妤斐,楊明.杭州飛機(jī)氣象觀測(cè)資料處理及質(zhì)量分析[J].氣象科技,2023,51(6):794~804

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2022-10-26
  • 定稿日期:2023-09-15
  • 錄用日期:
  • 在線發(fā)布日期: 2023-12-28
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
林芝县| 若羌县| 深州市| 昆山市| 遵义县| 石楼县| 铁岭县| 建湖县| 日照市| 梅河口市| 湟中县| 汉中市| 达孜县| 盈江县| 尉氏县| 自贡市| 临安市| 寿阳县| 丹棱县| 尤溪县| 新巴尔虎左旗| 新昌县| 阳曲县| 长丰县| 个旧市| 东乌珠穆沁旗| 合江县| 阿克陶县| 吉首市| 平安县| 丰原市| 临朐县| 平舆县| 吉木萨尔县| 莒南县| 安义县| 湘乡市| 苍梧县| 晴隆县| 波密县| 浏阳市|