MODE降水檢驗(yàn)評價(jià)指標(biāo)改進(jìn)及卷積半徑應(yīng)用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(42165001)、中國氣象局復(fù)盤總結(jié)專項(xiàng)(FPZJ2023117)和廣東省區(qū)域數(shù)值天氣預(yù)報(bào)重點(diǎn)實(shí)驗(yàn)室開放基金課題(J201802)資助


Improvement of MODE Precipitation Evaluation Index and Application of Convolution Radius
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于對象的診斷檢驗(yàn)方法(MODE)受降水臨界值、卷積半徑、屬性權(quán)重等參數(shù)的影響,合理選取卷積半徑并準(zhǔn)確表征預(yù)報(bào)場與觀測場之間的空間相似度決定了MODE的應(yīng)用效果。本文基于2020年夏季貴州54個(gè)降水個(gè)例,以多源融合降水(CMPA)作為實(shí)況,使用MODE和FSS評分(Fractions Skill Score)對中國氣象局廣東快速更新同化數(shù)值預(yù)報(bào)系統(tǒng)(CMAGD)24 h日降水預(yù)報(bào)進(jìn)行空間檢驗(yàn)。結(jié)果表明:卷積半徑過小易造成MODE提取降水對象過多,而卷積半徑過大則導(dǎo)致局部降水信息丟失,無法從降水場中提取到降水對象。不同卷積半徑下計(jì)算的最大相似度中值(MMI)存在突變。在MMI基礎(chǔ)上引入面積權(quán)重構(gòu)造面積平均最大相似度(AMMI)。AMMI不受提取降水對象個(gè)數(shù)的影響,較MMI更具有穩(wěn)定性,用于表征降水場之間的整體空間相似程度更為合理。根據(jù)對象總面積隨卷積半徑的變化將降水分為大范圍降水和局部降水2類。大范圍降水平均總面積隨著卷積半徑的增加而增加,AMMI隨卷積半徑變化不大。隨著卷積半徑的增加,局部降水平均總面積減小,平均AMMI有所減小。局部降水對卷積半徑選取較為敏感,以觀測場對象面積變化不超過10%的最大半徑作為卷積半徑有助于保留降水場大部分信息。

    Abstract:

    The Method for ObjectBased Diagnostic Evaluation (MODE) has been widely applied in spatial evaluation in recent years. MODE is affected by many parameters such as precipitation critical value, convolution radius and attribute weight; the application effect of MODE depends on reasonable selection of convolution radius and accurate characterisation of spatial similarity between forecast and observation fields. Taking the CMPA as observation, MODE and FSS (Fractions Skill Score) are used to test the CMAGD 24 h daily precipitation forecast based on 54 precipitation cases in Guizhou in this paper. The number of objects extracted by MODE falls with convolution radius; too small convolution radius easily results in too many precipitation objects extracted; if the convolution radius is too large, local precipitation information will be lost and precipitation objects cannot be extracted from the precipitation field. Therefore, an appropriate convolution radius should be adopted to extract precipitation objects with MODE. It is found that the MMI (the Median Maximum Interest Value) of MODE is very sensitive to the convolution radius change and even has a mutation, so it cannot stably represent the overall spatial similarity of precipitation fields. Based on the MMI, the area weight is introduced to construct the AMMI (the Area Mean of Maximum Interest Value) to distinguish the contribution of different objects. The AMMI is more reasonable to characterise the overall similarity of the forecast and observation precipitation fields, and is unaffected by the number of precipitation objects, which is more stable than the MMI. In general, AMMI is larger than FSS, and the difference in the change of AMMI and FSS with spatial scale is due to the different calculation basis. According to the change of object’s total area with the convolution radius, precipitation can be divided into largearea precipitation and local precipitation. The average total area of largescale precipitation grows with the convolution radius, while AMMI has little change. As the convolution radius goes up, the average total area and AMMI of local precipitation go down. Taking the maximum convolution radius which makes the total area change not exceeding 10% in the observation field as the critical radius, there is a large difference between the probability of the critical radius of largescale precipitation and local precipitation from 0.05° to 0.4°. Local precipitation is sensitive to the selection of convolution radius and determining the convolution radius with critical radius is helpful to retain most of the information of the precipitation field.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊富燕,陳百煉,彭芳,胡欣欣,李彥霖. MODE降水檢驗(yàn)評價(jià)指標(biāo)改進(jìn)及卷積半徑應(yīng)用[J].氣象科技,2024,52(2):218~227

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-04-06
  • 定稿日期:2023-11-27
  • 錄用日期:
  • 在線發(fā)布日期: 2024-04-29
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
乌拉特中旗| 凤翔县| 亳州市| 鹤岗市| 全州县| 桐庐县| 汝南县| 简阳市| 栾川县| 青神县| 南平市| 莱州市| 贵定县| 肇庆市| 宝丰县| 穆棱市| 阿克陶县| 司法| 元氏县| 黔西| 汉源县| 光泽县| 永善县| 松溪县| 六枝特区| 姚安县| 甘孜| 贵港市| 大兴区| 南城县| 巴东县| 台东县| 新巴尔虎左旗| 连云港市| 北海市| 临桂县| 类乌齐县| 平遥县| 大城县| 海城市| 阜城县|