氣象大數(shù)據(jù)云平臺仿真環(huán)境容器調(diào)度性能優(yōu)化研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家氣象信息中心信息網(wǎng)絡(luò)安全與“信創(chuàng)”技術(shù)研發(fā)創(chuàng)新團隊(NMIC-202011-05)攻關(guān)任務(wù)與廣東省氣象局科學(xué)技術(shù)研究項目(GRMC2022Z05, GRMC2021XQ03)項目資助


Research on Optimization of Docker Scheduling Performance for Simulation Environment of Meteorological Big Data Cloud Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實現(xiàn)2025年氣象關(guān)鍵核心技術(shù)自主可控的目標,氣象大數(shù)據(jù)云平臺(簡稱天擎)建立了基于海光X86服務(wù)器和麒麟操作系統(tǒng)的仿真環(huán)境。在仿真平臺運行中發(fā)現(xiàn),基于容器技術(shù)的產(chǎn)品加工與流水線子系統(tǒng)容器調(diào)度性能較差,不能滿足用戶融入算法的時效要求。針對此問題,本文采用對比分析法,選取天擎仿真環(huán)境和業(yè)務(wù)環(huán)境的3種CPU芯片服務(wù)器和3種操作系統(tǒng)為研究對象,設(shè)計了一系列組合對比測試用例,找到了影響容器調(diào)度性能的關(guān)鍵因素—操作系統(tǒng)內(nèi)核,并進一步分析了操作系統(tǒng)內(nèi)核設(shè)置對系統(tǒng)實時性和吞吐量的影響以及適用的業(yè)務(wù)場景。最后給出了麒麟操作系統(tǒng)內(nèi)核調(diào)整方法,通過調(diào)整內(nèi)核設(shè)置,容器調(diào)度性能大幅提高,滿足了產(chǎn)品加工系統(tǒng)的時效要求,為實現(xiàn)天擎的關(guān)鍵核心技術(shù)自主可控奠定基礎(chǔ)。

    Abstract:

    In order to achieve the goal of independent and controllable key core technologies for Meteo by 2025, the Meteo Big Data Cloud Platform (referred to as Tianqing) establishes a simulation environment based on Hygon X86 CPU and Kylin OS. However, in the operation of simulation platforms, it finds that the docker scheduling performance of data processing and assembly line subsystems based on Kubernetes is poor, which cannot meet the timeliness requirements of user integration algorithms. In response to this issue, this article adopts a comparative analysis method, selecting servers based on three types of CPU and three types of operating systems from the simulation environment and business environment for Tianqing as the research objects. A series of combined comparative test cases are designed. It finds that the kernel is the key factor affecting docker scheduling performance. Further analysis is conducted on the impact of operating system kernel settings on real-time and throughput, as well as the suitable business scenarios. Finally, a method for adjusting the Kylin OS kernel is provided. By adjusting the kernel settings, the docker scheduling performance significantly improves, meeting the timeliness requirements of the data processing system and laying the foundation for achieving self-supporting of the key core technology of Tianqing.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳鵬,韓同欣,陳士旺,聶元丁,鄭曉志.氣象大數(shù)據(jù)云平臺仿真環(huán)境容器調(diào)度性能優(yōu)化研究[J].氣象科技,2024,52(3):340~346

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-02
  • 定稿日期:2024-01-12
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-25
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
晋州市| 鄱阳县| 景洪市| 莫力| 吴桥县| 宁化县| 蒙阴县| 太白县| 花垣县| 东兰县| 平潭县| 广饶县| 襄汾县| 红原县| 张家口市| 呼图壁县| 阿图什市| 监利县| 肃南| 习水县| 宁都县| 澄城县| 明光市| 镇原县| 襄樊市| 崇左市| 温宿县| 石城县| 寿光市| 武隆县| 阳高县| 类乌齐县| 财经| 神池县| 金坛市| 浦城县| 全南县| 突泉县| 额济纳旗| 扬州市| 深水埗区|