寒潮背景下舟山群島氣溫空間插值方案對(duì)比評(píng)估
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

浙江省基礎(chǔ)公益研究計(jì)劃項(xiàng)目(LGF22D050007)、中國(guó)氣象局復(fù)盤(pán)總結(jié)專(zhuān)項(xiàng)項(xiàng)目(FPZJ2023-052)、浙江省氣象局重點(diǎn)項(xiàng)目(2022ZD30)、舟山市公益性科技項(xiàng)目(2022C31074)資助


Comparative Analysis of Spatial Interpolation Performance of Different Schemes for Temperature over Zhoushan Islands under Cold Wave Scenario
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    在測(cè)站稀疏的海島地區(qū),如何科學(xué)選擇插值方案以合理體現(xiàn)氣象要素的空間分布特征是精細(xì)化監(jiān)測(cè)面臨的重要問(wèn)題。以舟山群島為例,挑選了有中尺度站觀測(cè)以來(lái)(2014—2021 年)影響舟山的8 次寒潮過(guò)程,對(duì)比檢驗(yàn)了普通克里格(Ordinary Kriging,OK)、反距離權(quán)重(Inverse Distance Weighing,IDW)、ANUSPLIN(以下簡(jiǎn)稱(chēng)ANU)三種方案的插值效果。針對(duì)8 次過(guò)程的過(guò)程最低氣溫、日最低氣溫降幅和日平均氣溫降幅,在53 個(gè)測(cè)站中隨機(jī)選取11 個(gè)檢驗(yàn)站點(diǎn),發(fā)現(xiàn)ANU的插值誤差高于OK和IDW。進(jìn)一步設(shè)計(jì)了周邊站點(diǎn)密集、周邊站點(diǎn)稀疏、檢驗(yàn)站點(diǎn)脫離本島三組插值試驗(yàn),分析表明,ANU的插值表現(xiàn)與周邊站點(diǎn)的密集程度息息相關(guān):當(dāng)周邊站點(diǎn)密集時(shí),ANU的插值誤差小于OK和IDW;當(dāng)周邊站點(diǎn)稀疏時(shí),ANU的插值誤差明顯高于OK和IDW。在周邊站點(diǎn)密集分布的情形下,無(wú)論檢驗(yàn)站點(diǎn)位于舟山本島還是零散小島上,ANU均能取得最優(yōu)插值效果,說(shuō)明在氣溫插值中ANU對(duì)地形的依賴(lài)相對(duì)較小,插值精度對(duì)插值效果的影響亦較小。

    Abstract:

    Compared to inland areas, meteorological stations in the island regions appear scarce and unevenly distributed, which leads to noteworthy uncertainty in detailed characterisation of various meteorological elements. For the Zhoushan Islands, located in Southeast China, there exist many islands and islets, and the local terrain is quite complex. Therefore, different interpolation strategies usually generate diverse gridded results, which largely influence the reliability and accuracy of operational climate monitoring and diagnosing. Under the background of climate change, the Zhoushan region is frequently invaded by cold waves in recent years, so how to scientifically choose an interpolation scheme to reasonably represent spatial distribution characteristics of temperature becomes an important issue in local climate operations. To solve this problem, based on the index of root mean square error (RMSE), the interpolation effect of Ordinary Kriging (OK), Inverse Distance Weighting (IDW), and ANUSPLIN (ANU) are comparatively analysed for 8 cold wave processes influencing Zhoushan during 2014-2021. Two subdivided indices, i.e., temporal RMSE (TRMSE) and spatial RMSE (SRMSE) are further designed to evaluate the interpolation results on temporal and spatial dimensions respectively. Eleven stations are randomly selected from the total 53 meteorological observational stations to test the interpolation results of OK, IDW, and ANU for the minimum temperature, reduction of daily minimum temperature and daily-mean temperature in the 8 processes. It can be found that the bias in the ANU case is higher than that in the OK and IDW cases. To explain such a phenomenon, 3 interpolation experiments with dense surrounding stations, sparse surrounding stations, and specific distribution of examining stations (all the examining stations are not distributed in the main island of Zhoushan) are further designed. The results demonstrate that the performance of the ANU strategy is closely linked to the spread situation of peripheral stations. When the surrounding stations are concentrated, the interpolation bias of ANU is usually smaller than that of OK and IDW. However, if the surrounding stations appear sparse, the bias of ANU exhibits much larger. In the scenario of dense peripheral stations, regardless of the examining sites distributed over the main island or not, the ANU solution can always get the optimal interpolation results, which implies that the impact of topography on the performance of ANU in temperature interpolation is of less importance. Also, the influence of horizontal resolution for interpolation seems secondary. When the horizontal resolution for three interpolation schemes falls down to 1 km×1 km from 30 m×30 m, the change of RMSE is generally less than 0.1 ℃ for most circumstances, so the impact of interpolation resolution can be neglected.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

徐哲永,馬浩,傅娜,孫軼,盧琪,高大偉.寒潮背景下舟山群島氣溫空間插值方案對(duì)比評(píng)估[J].氣象科技,2024,52(5):630~643

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-10-18
  • 定稿日期:2024-05-27
  • 錄用日期:
  • 在線發(fā)布日期: 2024-10-30
  • 出版日期:
您是第位訪問(wèn)者
技術(shù)支持:北京勤云科技發(fā)展有限公司
河北省| 龙泉市| 霍州市| 永丰县| 吴桥县| 阿坝县| 德江县| 南川市| 包头市| 雷山县| 三河市| 安泽县| 公主岭市| 通道| 将乐县| 年辖:市辖区| 广西| 江北区| 申扎县| 湄潭县| 新昌县| 阳曲县| 凭祥市| 株洲县| 奉贤区| 达拉特旗| 文化| 阜新市| 宣武区| 丹江口市| 扶余县| 色达县| 滨海县| 白水县| 绥棱县| 绥德县| 中西区| 嫩江县| 大埔区| 贡嘎县| 渝北区|