氣象大數(shù)據(jù)云平臺(tái)仿真環(huán)境容器調(diào)度性能優(yōu)化研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家氣象信息中心信息網(wǎng)絡(luò)安全與“信創(chuàng)”技術(shù)研發(fā)創(chuàng)新團(tuán)隊(duì)(NMIC-202011-05)攻關(guān)任務(wù)與廣東省氣象局科學(xué)技術(shù)研究項(xiàng)目(GRMC2022Z05, GRMC2021XQ03)項(xiàng)目資助


Research on Optimization of Docker Scheduling Performance for Simulation Environment of Meteorological Big Data Cloud Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)2025年氣象關(guān)鍵核心技術(shù)自主可控的目標(biāo),氣象大數(shù)據(jù)云平臺(tái)(簡(jiǎn)稱天擎)建立了基于海光X86服務(wù)器和麒麟操作系統(tǒng)的仿真環(huán)境。在仿真平臺(tái)運(yùn)行中發(fā)現(xiàn),基于容器技術(shù)的產(chǎn)品加工與流水線子系統(tǒng)容器調(diào)度性能較差,不能滿足用戶融入算法的時(shí)效要求。針對(duì)此問(wèn)題,本文采用對(duì)比分析法,選取天擎仿真環(huán)境和業(yè)務(wù)環(huán)境的3種CPU芯片服務(wù)器和3種操作系統(tǒng)為研究對(duì)象,設(shè)計(jì)了一系列組合對(duì)比測(cè)試用例,找到了影響容器調(diào)度性能的關(guān)鍵因素—操作系統(tǒng)內(nèi)核,并進(jìn)一步分析了操作系統(tǒng)內(nèi)核設(shè)置對(duì)系統(tǒng)實(shí)時(shí)性和吞吐量的影響以及適用的業(yè)務(wù)場(chǎng)景。最后給出了麒麟操作系統(tǒng)內(nèi)核調(diào)整方法,通過(guò)調(diào)整內(nèi)核設(shè)置,容器調(diào)度性能大幅提高,滿足了產(chǎn)品加工系統(tǒng)的時(shí)效要求,為實(shí)現(xiàn)天擎的關(guān)鍵核心技術(shù)自主可控奠定基礎(chǔ)。

    Abstract:

    In order to achieve the goal of independent and controllable key core technologies for Meteo by 2025, the Meteo Big Data Cloud Platform (referred to as Tianqing) establishes a simulation environment based on Hygon X86 CPU and Kylin OS. However, in the operation of simulation platforms, it finds that the docker scheduling performance of data processing and assembly line subsystems based on Kubernetes is poor, which cannot meet the timeliness requirements of user integration algorithms. In response to this issue, this article adopts a comparative analysis method, selecting servers based on three types of CPU and three types of operating systems from the simulation environment and business environment for Tianqing as the research objects. A series of combined comparative test cases are designed. It finds that the kernel is the key factor affecting docker scheduling performance. Further analysis is conducted on the impact of operating system kernel settings on real-time and throughput, as well as the suitable business scenarios. Finally, a method for adjusting the Kylin OS kernel is provided. By adjusting the kernel settings, the docker scheduling performance significantly improves, meeting the timeliness requirements of the data processing system and laying the foundation for achieving self-supporting of the key core technology of Tianqing.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳鵬,韓同欣,陳士旺,聶元丁,鄭曉志.氣象大數(shù)據(jù)云平臺(tái)仿真環(huán)境容器調(diào)度性能優(yōu)化研究[J].氣象科技,2024,52(3):340~346

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-06-02
  • 定稿日期:2024-01-12
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-25
  • 出版日期:
您是第位訪問(wèn)者
技術(shù)支持:北京勤云科技發(fā)展有限公司
苍溪县| 丰顺县| 彭阳县| 堆龙德庆县| 丰县| 西乌珠穆沁旗| 建湖县| 大新县| 九台市| 同德县| 尼木县| 乐陵市| 商丘市| 克东县| 遂川县| 长阳| 弋阳县| 门头沟区| 大城县| 陕西省| 霍山县| 高陵县| 延庆县| 饶河县| 旺苍县| 额尔古纳市| 慈溪市| 开远市| 鄂伦春自治旗| 广汉市| 德州市| 湘潭县| 丰镇市| 同德县| 吉隆县| 剑川县| 仪陇县| 天柱县| 固始县| 定安县| 拜城县|