S、Talagrand、概率積分變換(Probability Integral Transform, PIT)直方圖及屬性圖檢驗方法對本次過程BMA訂正前后的概率預(yù)報進(jìn)行對比分析,結(jié)果表明:①50 d為適用于浙江梅汛期ECMWF集合預(yù)報訂正的BMA最優(yōu)訓(xùn)練期,經(jīng)最優(yōu)訓(xùn)練期的BMA訂正后,預(yù)報離散度有所增加,預(yù)報誤差有所下降;②BMA對0.1 mm、10.0 mm和25.0 mm閾值降水的訂正效果顯著,經(jīng)BMA訂正后3個閾值的降水預(yù)報BS下降率分別為25.92%、19.29%、4.76%,但對超過50.0 mm的降水訂正效果不明顯,且隨著降水閾值增加,BMA的訂正效果減弱;③在強(qiáng)降水個例中,BMA能有效減少各閾值降水預(yù)報概率大值落區(qū)偏差,使訂正后的降水預(yù)報概率大值區(qū)與觀測落區(qū)更一致。"/>
2020年超長梅汛期降水概率預(yù)報應(yīng)用與檢驗
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

浙江省氣象局青年項目(2021QN11)、浙江省氣象局重點項目(2022ZD01)資助


Application and Verification of Probabilistic Forecast of Precipitation During Super Long Meiyu Season in 2020
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于歐洲中期天氣預(yù)報中心(European Center for Medium-range Weather Forecasts,ECMWF)集合預(yù)報資料及浙江全省自動站降水觀測資料,采用貝葉斯模型平均(Bayesian Model Average, BMA)方法對2020年浙江超長梅汛期開展降水概率預(yù)報訂正試驗。采用平均絕對誤差、連續(xù)等級概率評分、布萊爾評分BS、Talagrand、概率積分變換(Probability Integral Transform, PIT)直方圖及屬性圖檢驗方法對本次過程BMA訂正前后的概率預(yù)報進(jìn)行對比分析,結(jié)果表明:①50 d為適用于浙江梅汛期ECMWF集合預(yù)報訂正的BMA最優(yōu)訓(xùn)練期,經(jīng)最優(yōu)訓(xùn)練期的BMA訂正后,預(yù)報離散度有所增加,預(yù)報誤差有所下降;②BMA對0.1 mm、10.0 mm和25.0 mm閾值降水的訂正效果顯著,經(jīng)BMA訂正后3個閾值的降水預(yù)報BS下降率分別為25.92%、19.29%、4.76%,但對超過50.0 mm的降水訂正效果不明顯,且隨著降水閾值增加,BMA的訂正效果減弱;③在強(qiáng)降水個例中,BMA能有效減少各閾值降水預(yù)報概率大值落區(qū)偏差,使訂正后的降水預(yù)報概率大值區(qū)與觀測落區(qū)更一致。

    Abstract:

    Based on the ensemble forecast data derived from European Centre for Medium-range Weather Forecasts (ECMWF) ensemble forecast system and observation data derived from automatic observation stations in Zhejiang region, the Bayesian Model Averaging (BMA) method is used to calibrate the probabilistic forecasts of precipitation during the super long Meiyu season in 2020. In this paper, we verify the raw ensemble probabilistic forecast and BMA calibrated probabilistic forecast from 1 June to 15 July, 2020, by Mean Absolute Error (MAE), Continuous Ranked Probability Score (CRPS), Brier Score (BS), Talagrand, Probability Integral Transform (PIT) histogram, and attribute diagram. The verification results before and after calibration are compared. The analysis results are listed as follows. (1) In 8 different training periods (10 days to 80 days), 50 days correspond to smaller MAE and CRPS score values. So we set 50 days as the optimal BMA training period for ECMWF ensemble forecast calibration in the Meiyu season in Zhejiang Province. After BMA calibration in the optimal training period, the spread of ensemble forecast increases and the forecast error decreases. Analysing from the quantitative verification indicators, BMA can effectively calibrate the overall precipitation in the test stage, but it cannot calibrate the daily precipitation in the test stage. (2) For forecasting of different threshold precipitation, BMA has different calibration performance. For the thresholds of 0.1 mm, 10.0 mm, and 25.0 mm, BMA has a significant calibration effect. After BMA calibration, the CRPS of precipitation probabilistic forecast for these three thresholds (0.1 mm, 10.0 mm, and 25.0 mm) decreases by 25.92%, 19.29%, and 4.76%, respectively. However, the calibration effect of BMA weakens with the increase of precipitation threshold. For the events with total precipitation exceeding 50.0 mm, the BMA calibration effect is not as significant as that of the smaller threshold. In addition, BMA can effectively improve the forecast skills of 0.1 mm, 10.0 mm and 25.0 mm threshold precipitation and make the forecast probability more closely match the observation. (3) In the case of heavy rain, the high probability range of the raw ensemble probabilistic forecast is always wider than that of the observation. BMA has the ability to slightly calibrate the raw ensemble forecast probability. After BMA calibration, the high probability range of precipitation forecast at each threshold effectively reduces the deviation. The empty message information and the probability of empty message events also reduce after calibration. So BMA can make the calibrated high probability range of precipitation forecast more consistent with the observed range. But unfortunately, BMA cannot adjust the spatial distribution of precipitation forecast probability.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

姚夢穎,婁小芬,劉雪晴,邱金晶.2020年超長梅汛期降水概率預(yù)報應(yīng)用與檢驗[J].氣象科技,2024,52(3):367~379

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2023-05-26
  • 定稿日期:2024-01-11
  • 錄用日期:
  • 在線發(fā)布日期: 2024-06-25
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
噶尔县| 读书| 松桃| 泗洪县| 武定县| 嵩明县| 沽源县| 杭锦旗| 德安县| 巴东县| 琼结县| 延安市| 洛扎县| 新乡市| 饶河县| 陈巴尔虎旗| 麦盖提县| 读书| 宁乡县| 敦化市| 宝清县| 三亚市| 汤阴县| 会理县| 沾化县| 曲沃县| 乌审旗| 岱山县| 泽库县| 襄汾县| 永安市| 尉犁县| 绥滨县| 利辛县| 铜川市| 曲周县| 龙游县| 廊坊市| 九台市| 太湖县| 萍乡市|