基于CLDAS溫度適宜度指標(biāo)空間化方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

內(nèi)蒙古氣象局科技創(chuàng)新項目(nmqxkjcx201602)、國家公益性行業(yè)(氣象)科研專項(GYHY201206021)、國家公益性行業(yè)(氣象)科研專項(GYHY201506016)資助


Method for Spatializing Temperature Suitability Index Based on CLDAS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了避免站點觀測數(shù)據(jù)空間插值誤差,提高玉米溫度適宜度指標(biāo)空間化精度,本文利用陸面數(shù)據(jù)同化系統(tǒng) CLDAS逐小時氣溫同化數(shù)據(jù),基于內(nèi)蒙古玉米動態(tài)適宜度計算方法,利用GIS空間分析和建模功能,構(gòu)建逐日溫度適宜度指標(biāo)的空間化計算模型。該模型根據(jù)溫度適宜度動態(tài)模型計算指定日期的“三基點”溫度指標(biāo)空間分布;結(jié)合CLDAS日平均氣溫空間分布,利用條件函數(shù)實現(xiàn)適宜度指標(biāo)分段空間化計算。以2015年5—8月為例,進行常規(guī)氣象站點誤差檢驗,結(jié)果表明:常規(guī)站檢驗最大絕對誤差0156,90%的站點絕對誤差小于01;最大相對誤差369%,70%的站點相對誤差不足8%;CLDAS數(shù)據(jù)很好的把握了5月高溫、8月低溫的不利影響,適宜度為0。基于CLDAS氣溫擬合數(shù)據(jù)的溫度適宜度模型流程清晰實用,適宜度指標(biāo)空間化精度較高。

    Abstract:

    In order to avoid the errors of the site observation data during the spatial interpolation and improve the accuracy of the spatialization on corn temperature suitability index, the CMA Land Data Assimilation System is used, which applies hourly temperature data. The daily temperature suitability index calculation model is set up in the space, which is based on the corn dynamic suitability calculation method of Inner Mongolia by using of GIS spatial analysis and Model Builder. The temperature suitability dynamic model requires inputting date that is used to calculate the spatial distribution of temperature indicators, such as optimum temperature, maximum temperature, and minimum temperature. Combining with the spatial distribution of the average daily temperature of CLDAS, the temperature suitability index is calculated on the space by using condition functions. Regular site suitability and model calculation results are compared from May to August 2015 as an example. The results show that the maximum absolute error is 0156, and the absolute error of about 90% results is less than 01 The maximum relative error is 369%, and the relative error of about 70% results is less than 8%. CLDAS data can reflect the influence of high temperature in May and low temperature in August, in which suitability index is 0 By using the Model Builder, the constructed calculation model of suitability index has higher practicability. Based on CLDAS temperature data, the temperature suitability index error is relatively small, and the precision of the spatialization can be used for further researches.

    參考文獻
    相似文獻
    引證文獻
引用本文

張超,吳國周,宋海清,武榮盛.基于CLDAS溫度適宜度指標(biāo)空間化方法[J].氣象科技,2017,45(3):555~560

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2016-05-30
  • 定稿日期:2016-09-07
  • 錄用日期:
  • 在線發(fā)布日期: 2017-07-03
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
江门市| 缙云县| 茌平县| 桦甸市| 襄汾县| 越西县| 定兴县| 松滋市| 正蓝旗| 龙井市| 井研县| 元谋县| 靖边县| 英超| 哈巴河县| 安康市| 盈江县| 榕江县| 宣汉县| 个旧市| 高安市| 厦门市| 阿拉善盟| 稷山县| 乌苏市| 若尔盖县| 濮阳县| 北流市| 原平市| 临桂县| 崇义县| 阿合奇县| 桐梓县| 亳州市| 迭部县| 巨野县| 丘北县| 天气| 杭锦旗| 涪陵区| 安龙县|