測(cè)風(fēng)激光雷達(dá)遠(yuǎn)距離測(cè)量技術(shù)及應(yīng)用
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃課題“森林草原火災(zāi)救援現(xiàn)場(chǎng)三維風(fēng)場(chǎng)探測(cè)及預(yù)警技術(shù)與關(guān)鍵裝備研究”(2021YFC3001902)資助


Long-Range Measurement Technology and Application of Doppler Wind Lidar for Wind Field Detection for Forest Fires
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    測(cè)風(fēng)激光雷達(dá)具備高時(shí)空分辨率和非接觸式測(cè)量的能力,對(duì)于森林火災(zāi)的防控和救援具有重要意義。然而,現(xiàn)有測(cè)風(fēng)激光雷達(dá)探測(cè)距離難以滿足森林草原火災(zāi)現(xiàn)場(chǎng)對(duì)遠(yuǎn)距離風(fēng)場(chǎng)監(jiān)測(cè)的需求。為此,本文從大功率激光發(fā)射技術(shù)與晴空弱信號(hào)算法兩個(gè)方面展開(kāi)研究,提出了大功率激光發(fā)射與噪聲抑制技術(shù),開(kāi)發(fā)了基于激光雷達(dá)頻譜信號(hào)的弱信號(hào)風(fēng)速精度優(yōu)化算法,從硬件技術(shù)與數(shù)據(jù)處理兩方面實(shí)現(xiàn)了探測(cè)距離的綜合提升。研究結(jié)果表明,采用上述技術(shù)和算法后測(cè)風(fēng)激光雷達(dá)可以實(shí)現(xiàn)15 km的大范圍風(fēng)場(chǎng)測(cè)量,在12600 m處的數(shù)據(jù)獲取率超過(guò)90%;與測(cè)風(fēng)塔進(jìn)行對(duì)比,探測(cè)精度具有很好的一致性,水平風(fēng)速和風(fēng)向的決定系數(shù)均在0.99以上,風(fēng)速平均偏差在0.05 m/s以下,風(fēng)向平均偏差在2°以下。

    Abstract:

    Global climate warming leads to an increase in the frequency and intensity of forest and grassland fires. During the rescue process of forest and grassland fires, wind is the most important meteorological factor affecting the spread of the fire. It determines not only the speed of the fire’s spread but also the area and direction of the fire’s spread. Moreover, the changeable wind field information under complex terrain conditions further increases the risks for firefighting efforts and the safety guarantee of rescue workers. The wind lidar, which has the capabilities of high spatial and temporal resolution and non-contact measurement, is of great significance for the prevention and control of forest fires and the on-site rescue command. However, the detection range of the existing wind lidar is difficult to meet the demand for long-distance wind field monitoring at the forest and grassland fire site, which restricts the precise monitoring and early warning of secondary disasters at the forest fire rescue site. Therefore, The study conducts research from two aspects: high-power laser emission technology and clear-sky weak signal algorithm, and comprehensively improves the detection range from both hardware technology and data processing aspects. The high-power laser emission technology mainly includes low-noise narrow linewidth technology, multi-stage pump source amplification technology, and Brillouin scattering suppression technology, so as to achieve high-power output as a whole and ensure the measurement accuracy, sensitivity, and reliability of the lidar system. In terms of data processing, the maximum likelihood discrete spectrum peak estimation algorithm and the optimised power spectrum frequency shift estimation algorithm are used to improve the detection ability of the lidar for weak signals. The research results show that after adopting the above technologies and algorithms, the wind lidar achieves large-scale wind field measurement over a range of 15 km. The data acquisition rate exceeds 90% at 12,600 metres, reaches more than 80% at 14,400 metres, and is above 75% at 15,000 metres, with a significant improvement in detection ability. In terms of detection accuracy, there is a high degree of consistency when compared with the data from the wind measurement tower. The determination coefficients of the horizontal wind speed and wind direction at the two heights of 77 metres and 103 metres between the wind lidar and the wind measurement tower are all above 0.99, the deviation of the linear regression fitting degree is all below 0.005, the average deviation of the wind speed is below 0.05 m/s, and the average deviation of the wind direction is below 2 degrees.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王改利,楊亮亮,陳沛,范夢(mèng)奇,馬麗,郝勇,秦勝光,王琪超.測(cè)風(fēng)激光雷達(dá)遠(yuǎn)距離測(cè)量技術(shù)及應(yīng)用[J].氣象科技,2025,53(4):457~467

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-17
  • 定稿日期:2025-05-12
  • 錄用日期:
  • 在線發(fā)布日期: 2025-08-27
  • 出版日期:
您是第位訪問(wèn)者
技術(shù)支持:北京勤云科技發(fā)展有限公司
阿坝县| 湖口县| 沧源| 大悟县| 察雅县| 九江县| 望都县| 邵阳县| 沙湾县| 贵溪市| 南安市| 蒙山县| 花莲市| 乌拉特前旗| 耿马| 青铜峡市| 罗平县| 年辖:市辖区| 安多县| 会理县| 合山市| 北海市| 澎湖县| 会东县| 商水县| 遂昌县| 盐城市| 论坛| 拉孜县| 衡阳市| 探索| 弥渡县| 象州县| 探索| 瓦房店市| 桑日县| 旬阳县| 铁岭市| 青神县| 岳普湖县| 邢台市|