VOR)有顯著的相關關系(秋季Ⅱ區(qū)除外),除了低層RVOR,夏季Ⅰ區(qū)TC頻次與500 hPa垂直速度(OMEGA)和700~500 hPa相對濕度(RHUM)有關;Ⅱ區(qū)TC強度與700~500 hPa RHUM、500 hPa OMEGA和風垂直切變(VWS)有關,Ⅱ區(qū)TC頻次與500 hPa OMEGA和VWS有關。秋季Ⅰ區(qū)TC頻次與500 hPa OMEGA有關。無論夏季與秋季,TC活動與海洋因子均表現(xiàn)為不顯著的相關或顯著的負相關關系,不同區(qū)域影響TC活動的局地環(huán)境因子有所不同,與季節(jié)和區(qū)域劃分有關,具有復雜性。③強季風槽可通過低層大的Rvor、中層上升運動及高濕影響夏、秋季I區(qū)TC活動;Nino3.4區(qū)海溫變暖可使夏季Ⅱ區(qū)850 hPa 出現(xiàn)異常偏西風,導致低層Rvor增大;200 hPa出現(xiàn)異常反氣旋環(huán)流,導致Vws減弱;低層大的Rvor配合高層反氣旋環(huán)流使中層上升運動和水汽輻合增加,進而影響該區(qū)TC活動。當WNP副高西伸(東縮)加強(減弱)時,會引起局地負(正)渦度異常從而導致移入夏季Ⅲ區(qū)的TC頻次減少(增多),當中層引導氣流加強時會導致更多的強TC移入該區(qū);兩個高壓之間的相對低壓區(qū)輻合有利于低層Rvor增大,進而影響秋季Ⅲ區(qū)TC活動。"/>
西北太平洋熱帶氣旋強度和頻次區(qū)域特征及局地環(huán)境因子分析
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目“海洋-大氣-高原協(xié)同作用對東亞季風機理和預測預估的影響”(2023YFF0805300)資助


Regional Characteristics of Tropical Cyclones Intensity and Frequency in Western North Pacific and an Analysis of Local Environmental Factors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    本文利用美國聯(lián)合臺風警報中心、日本氣象廳東京區(qū)域?qū)I(yè)氣象中心和中國氣象局上海臺風研究所整編的熱帶氣旋(Tropical Cyclone,TC)最佳路徑數(shù)據(jù)集、NCEP大氣再分析資料和相關分析等方法,研究了1989—2020年夏季(7—9月)和秋季(10—11月)西北太平洋(Western North Pacific,WNP)TC強度和頻次在不同季節(jié)不同區(qū)域的基本特征及其與局地環(huán)境因子的關系,結果表明:①夏季W(wǎng)NP三個區(qū)域(Ⅰ區(qū):10°~25°N,110°E~145°;Ⅱ區(qū):10°~25°N,145°E~180°;Ⅲ區(qū):25°~37.5°N,125°E~180°)TC總頻次為10164次;秋季W(wǎng)NP 3個區(qū)域(Ⅰ區(qū):5°~17.5°N,110°E~180°;Ⅱ區(qū):17.5°~35°N,142.5°E~180°;Ⅲ區(qū):17.5°~35°N,120°~142.5°E)TC總頻次為4984次,夏季TC活動高于秋季。②夏、秋兩季TC活動與850 hPa相對渦度(RVOR)有顯著的相關關系(秋季Ⅱ區(qū)除外),除了低層RVOR,夏季Ⅰ區(qū)TC頻次與500 hPa垂直速度(OMEGA)和700~500 hPa相對濕度(RHUM)有關;Ⅱ區(qū)TC強度與700~500 hPa RHUM、500 hPa OMEGA和風垂直切變(VWS)有關,Ⅱ區(qū)TC頻次與500 hPa OMEGAVWS有關。秋季Ⅰ區(qū)TC頻次與500 hPa OMEGA有關。無論夏季與秋季,TC活動與海洋因子均表現(xiàn)為不顯著的相關或顯著的負相關關系,不同區(qū)域影響TC活動的局地環(huán)境因子有所不同,與季節(jié)和區(qū)域劃分有關,具有復雜性。③強季風槽可通過低層大的Rvor、中層上升運動及高濕影響夏、秋季I區(qū)TC活動;Nino3.4區(qū)海溫變暖可使夏季Ⅱ區(qū)850 hPa 出現(xiàn)異常偏西風,導致低層Rvor增大;200 hPa出現(xiàn)異常反氣旋環(huán)流,導致Vws減弱;低層大的Rvor配合高層反氣旋環(huán)流使中層上升運動和水汽輻合增加,進而影響該區(qū)TC活動。當WNP副高西伸(東縮)加強(減弱)時,會引起局地負(正)渦度異常從而導致移入夏季Ⅲ區(qū)的TC頻次減少(增多),當中層引導氣流加強時會導致更多的強TC移入該區(qū);兩個高壓之間的相對低壓區(qū)輻合有利于低層Rvor增大,進而影響秋季Ⅲ區(qū)TC活動。

    Abstract:

    This study utilises best-track datasets of tropical cyclones (TCs) from the Joint Typhoon Warning Center (JTWC), Japan Meteorological Agency Tokyo Regional Specialised Meteorological Center (RSMC), and Shanghai Typhoon Institute of China Meteorological Administration (CMA), along with NCEP reanalysis data and correlation analysis methods, to investigate the fundamental characteristics of TC intensity and frequency in different seasons (July-September for summer and October-November for autumn) and subregions over the Western North Pacific (WNP) during 1989-2020, as well as their relationships with local environmental factors. The results indicate that: (1) The total TC frequency observed in the three summer WNP subregions (Area I: 10°-25°N, 110°-145°E; Area II: 10°-25°N, 145°E-180°; Area III: 25°-37.5°N, 125°E-180°) is 10164, while the total TC frequency in the three autumn subregions (Area I: 5°-17.5°N, 110°E-180°; Area II: 17.5°-35°N, 142.5°E-180°; Area III: 17.5°-35°N, 120°-142.5°E) is 4984. This demonstrates significantly higher TC activity in summer than in autumn. (2) TC activity during both summer and autumn exhibits statistically significant correlations with 850 hPa relative vorticity (RVOR), except for Area II in autumn. In addition to low-level RVOR, summer TC frequency in Area I is associated with 500 hPa vertical velocity (OMEGA) and 700-500 hPa relative humidity (RHUM). Summer TC intensity in Area II is linked to 700-500 hPa RHUM, 500 hPa OMEGA, and vertical wind shear (VWS), while summer TC frequency in Area II correlates with 500 hPa OMEGA and VWS. Autumn TC frequency in Area I shows a relationship with 500 hPa OMEGA. Regardless of season, TC activity generally displays either nonsignificant correlations or significantly negative correlations with oceanic factors. The local environmental factors influencing TC activity vary across regions and seasons, depending on seasonal and regional divisions, which indicates complex interactions. (3) A strong monsoon trough enhances TC activity in summer and autumn Area I through low-level high RVOR, mid-level ascending motion, and high humidity. The warming of sea surface temperature in the Nino3.4 region can induce anomalous westerly winds at 850 hPa in Area II during summer, leading to increased low-level RVOR. Concurrently, an anomalous anticyclonic circulation emerges at 200 hPa, resulting in reduced VWS. The combination of the enhanced low-level RVOR and upper-level anticyclonic circulation further strengthens mid-level upward motion and moisture convergence, thereby influencing TC activity in this region. When the Western Pacific subtropical high extends westward (retreats eastward), it generates localised negative (positive) vorticity anomalies, leading to reduced (increased) TC frequency entering summer Area III. Strengthened mid-level steering flows further enhance the intrusion of intense TCs into this region. The convergence in the relative low region between two highs enhances low-level RVOR, which consequently modulates TC activity in Area III during autumn.

    參考文獻
    相似文獻
    引證文獻
引用本文

王浩然,趙平,王迎春.西北太平洋熱帶氣旋強度和頻次區(qū)域特征及局地環(huán)境因子分析[J].氣象科技,2025,53(4):520~534

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-12-03
  • 定稿日期:2025-05-20
  • 錄用日期:
  • 在線發(fā)布日期: 2025-08-27
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發(fā)展有限公司
温宿县| 敦煌市| 交城县| 肥西县| 犍为县| 大埔区| 太康县| 海盐县| 合江县| 红桥区| 海门市| 丰都县| 屯留县| 奉贤区| 高安市| 巨野县| 宜黄县| 灵石县| 法库县| 疏附县| 盐边县| 沭阳县| 化德县| 达尔| 古蔺县| 长海县| 清远市| 远安县| 铁岭县| 南召县| 孝义市| 青田县| 谢通门县| 肥东县| 乐陵市| 古蔺县| 剑河县| 陕西省| 会理县| 海南省| 祥云县|