中國(guó)東西部閃電活動(dòng)雷達(dá)特征對(duì)比分析
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

中國(guó)氣象局氣象能力提升聯(lián)合研究專項(xiàng)(23NLTSZ002)、中國(guó)氣象局創(chuàng)新發(fā)展專項(xiàng)(CXFZ2024J001)、中國(guó)氣象局青年創(chuàng)新團(tuán)隊(duì)(CMA2023QN06)和上海市氣象局科技人才類項(xiàng)目(KJRC202403,KJRC202411)共同資助


Comparative Analysis of Radar Characteristics of Lightning Activity in Eastern and Western China
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為加深中國(guó)東西部地區(qū)閃電形成機(jī)理的認(rèn)識(shí),進(jìn)而為東西部地區(qū)閃電預(yù)報(bào)預(yù)警業(yè)務(wù)提供差異化的經(jīng)驗(yàn)和借鑒。采用閃電定位儀、天氣雷達(dá)組網(wǎng)拼圖產(chǎn)品和實(shí)況探空等多源觀測(cè),對(duì)上海和喀什閃電的時(shí)空分布特征及其對(duì)應(yīng)的雷達(dá)三維特征進(jìn)行了統(tǒng)計(jì)分析,并探索導(dǎo)致東西部地區(qū)閃電回波特征差異的成因。結(jié)果顯示:上海和喀什閃電集中在5—9月,高發(fā)于午后至傍晚,同時(shí)喀什閃電與地形密切相關(guān),具有夜發(fā)性。上海平均閃電回?fù)裘芏让黠@高于喀什,平均閃電回?fù)裘芏缺燃s為732.1∶1。上海地區(qū)閃電對(duì)應(yīng)回波單體的組合反射率因子強(qiáng)度、回波頂高和垂直液態(tài)水含量高于喀什地區(qū);上海地區(qū)閃電對(duì)應(yīng)回波單體在垂直結(jié)構(gòu)上的伸展高度明顯高于喀什地區(qū),其中30 dBz,35 dBz和40 dBz回波分別超過-20 ℃層,-10 ℃層和0 ℃層高度對(duì)上海閃電的預(yù)報(bào)預(yù)警具備較大指示意義,而回波頂高超過-10 ℃層和30 dBz回波高度達(dá)到0 ℃層對(duì)喀什閃電預(yù)警業(yè)務(wù)指導(dǎo)性更強(qiáng)。兩地閃電活動(dòng)和雷達(dá)特征的差異主要是動(dòng)力和水汽共同造成。

    Abstract:

    Lightning, as one of the frequent natural disasters in China, poses significant meteorological hazards. Weather radar systems, with their inherent advantages of high spatiotemporal resolution, enable precise characterisation of lightning formation mechanisms and evolutionary patterns through synergistic integration with lightning detection datasets. This paper analyses lightning forecasting and early warning services in the eastern and western regions of China, using Shanghai and Kashgar as representatives. By leveraging multi-source observations, including lightning locators, weather radar mosaic products, and sounding data, an annual statistical analysis of the spatiotemporal distribution, three-dimensional characteristics of lightning, and their corresponding radar signatures is conducted in these two regions. The study explores the causes of the differences in lightning characteristics between the eastern and western regions. The results indicate that: (1) Both Shanghai and Kashgar exhibit concentrated lightning activity between May and September, with peak occurrences from afternoon to evening. Notably, Kashgar demonstrates distinct nocturnal characteristics in lightning distribution due to topographic effects. Geospatial analysis reveals contrasting spatial patterns: Shanghai’s lightning hotspots predominantly cluster over urbanised areas and land-water interfaces, whereas Kashgar’s lightning distribution shows strong orographic correlation, with maximum density zones located along the southern foothills of the Western Tianshan Mountains, eastern flanks of the Pamir Plateau, and northern slopes of the Kunlun Mountains. Statistically, the average lightning stroke density in Shanghai significantly surpasses that in Kashgar, maintaining a ratio of approximately 732.1∶1. (2) The combined reflectivity factor intensity, echo top height, and vertical liquid water content associated with lightning echo cells in Shanghai are markedly greater than those observed in Kashgar. The extension height of lightning echo cells in Shanghai is substantially higher than that in Kashgar. Notably, the 30 dBz, 35 dBz, and 40 dBz echo exceeding the -20 ℃, -10 ℃, and 0 ℃ layer height serves as a crucial indicator for lightning forecasting and early warning in Shanghai, whereas for Kashgar, the echo top height surpassing the -10 ℃ layer and the 30 dBz echo reaching the 0 ℃ layer hold greater predictive value. (3) Lightning activity is formed under the combined effects of three essential factors: sufficient atmospheric instability energy, dynamic lifting mechanisms, and adequate moisture supply. Comparative analysis reveals that during thunderstorm days, Shanghai exhibits significantly higher values of Most Unstable CAPE (MUCAPE), mid-level Relative Humidity (midRH), and Precipitable Water (PW) compared to Kashgar, while demonstrating lower Most Unstable Lifted Index (MULI) values. These meteorological parameters indicate stronger convective activity in Shanghai, where intense updrafts transport abundant moisture to upper colder layers. This enhanced vertical transport mechanism creates more favourable conditions for charge separation processes, making Shanghai more prone to lightning activity than Kashgar.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王鵬飛,管理,漆梁波,陳波,陶嵐,陳賽華.中國(guó)東西部閃電活動(dòng)雷達(dá)特征對(duì)比分析[J].氣象科技,2025,53(4):595~605

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2024-11-06
  • 定稿日期:2025-05-07
  • 錄用日期:
  • 在線發(fā)布日期: 2025-08-27
  • 出版日期:
您是第位訪問者
技術(shù)支持:北京勤云科技發(fā)展有限公司
纳雍县| 宝山区| 仁布县| 崇文区| 武川县| 临邑县| 三都| 濉溪县| 隆昌县| 罗甸县| 宝兴县| 大同市| 恭城| 铜梁县| 广安市| 咸阳市| 鹤庆县| 普宁市| 天门市| 汪清县| 特克斯县| 古浪县| 南漳县| 富裕县| 稷山县| 通海县| 台东市| 万年县| 密云县| 霍林郭勒市| 黔江区| 太仓市| 玉溪市| 互助| 德昌县| 陕西省| 元谋县| 永昌县| 定西市| 天等县| 城固县|